Skip to main content
Log in

Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

The use of herbal medicines is common in Africa, and patients often use a combination of herbs and drugs. Concurrent herbal and pharmaceuticals treatments can cause adverse effects through herb-drug interactions (HDI). This study evaluated the potential risk of HDI for five medicinal plants, Vernonia amygdalina, Ocimum gratissimum, Moringa oleifera, Azadirachta indica, and Picralima nitida, using in vitro assays. Patients with diabetes and some other disease conditions commonly use these medicinal plants in Nigeria, and little is known regarding their potential for drug interaction, despite their enormous use.

Methods

Crude extracts of the medicinal plants were evaluated for reversible and time-dependent inhibition (TDI) activity of six cytochrome P450 (CYP) enzymes using pooled human liver microsomes and cocktail probe-based assays. Enzyme activity was determined by quantifying marker metabolites' formation using liquid chromatography-mass spectrometry/mass spectrometry. The drug interaction potential was predicted for each herbal extract using the in vitro half-maximal inhibitory concentration (IC50) values and the percentage yield.

Results

O. gratissimum methanol extracts reversibly inhibited CYP 1A2, 2C8, 2C9 and 2C19 enzymes (IC50: 6.21 µg/ml, 2.96 µg/ml, 3.33 µg/ml and 1.37 µg/ml, respectively). Additionally, V. amygdalina methanol extract inhibited CYP2C8 activity (IC50: 5.71 µg/ml); P. nitida methanol and aqueous extracts inhibited CYP2D6 activity (IC50: 1.99 µg/ml and 2.36 µg/ml, respectively) while A. indica methanol extract inhibited CYP 3A4/5, 2C8 and 2C9 activity (IC50: 7.31 µg/ml, 9.97 µg/ml and 9.20 µg/ml, respectively). The extracts showed a potential for TDI of the enzymes when incubated at 200 µg/ml; V. amygdalina and A. indica methanol extracts exhibited TDI potential for all the major CYPs.

Conclusions

The medicinal plants inhibited CYP activity in vitro, with the potential to cause in vivo HDI. Clinical risk assessment and proactive monitoring are recommended for patients who use these medicinal plants concurrently with drugs that are cleared through CYP metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ogbera A, Dada O, Adeleye F, Jewo P. Complementary and alternative medicine use in diabetes mellitus. West Afr J Med. 2011;29(3):58–62.

    Article  Google Scholar 

  2. Ezeome ER, Anarado AN. Use of complementary and alternative medicine by cancer patients at the University of Nigeria Teaching Hospital, Enugu, Nigeria. BMC Complement Altern Med. 2007. https://doi.org/10.1186/1472-6882-7-28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ilomuanya MO, Okubanjo OO, Azubuike C, Oguntibeju A, Ajiboye D, Maduka C. Evaluation of the frequency of use of herbal drugs with concomitant administration of highly active antiretroviral therapy and its effect on medication adherence in two health care facilities in southwestern Nigeria. J AIDS HIV Res. 2017;9(1):8–16.

    Article  Google Scholar 

  4. Amaeze OU, Aderemi-Williams RI, Ayo-Vaughan MA, Ogundemuren DA, Ogunmola DS, Anyika EN. Herbal medicine use among Type 2 diabetes mellitus patients in Nigeria: understanding the magnitude and predictors of use. Int J Clin Pharm. 2018;40(3):580–8.

    Article  PubMed  Google Scholar 

  5. Chang HYA, Wallis M, Tiralongo E. Use of complementary and alternative medicine among people with type 2 diabetes in Taiwan: a cross-sectional survey. Evid Based Complement Altern Med. 2011. https://doi.org/10.1155/2011/983792.

    Article  Google Scholar 

  6. Mwangi J, Gitonga L. Perceptions and use of herbal remedies among patients with diabetes mellitus in Murang’a North District, Kenya. Open J Clin Diagn. 2014;4:152–72.

    Article  Google Scholar 

  7. Singh J, Gautam C, Singh R. Self-medication with herbal remedies amongst patients of type 2 diabetes mellitus: a preliminary study. Indian J Endocrinol Metab. 2012;16(4):662–3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jou J, Johnson PJ. Nondisclosure of complementary and alternative medicine use to primary care physicians: findings from the 2012 national health interview survey. JAMA Intern Med. 2016;176(4):545–6.

    Article  PubMed  Google Scholar 

  9. Ben-Arye E, Attias S, Levy I, Goldstein L, Schiff E. Mind the gap: disclosure of dietary supplement use to hospital and family physicians. Patient Educ Couns. 2017;100(1):98–103.

    Article  PubMed  Google Scholar 

  10. Gerber W, Steyn JD, Kotzé AF, Hamman JH. Beneficial pharmacokinetic drug interactions: a tool to improve the bioavailability of poorly permeable drugs. Pharmaceutics. 2018;10(3):106.

    Article  CAS  PubMed Central  Google Scholar 

  11. Borse SP, Singh DP, Nivsarkar M. Understanding the relevance of herb-drug interaction studies with special focus on interplays. Porto Biomed J. 2019;4(2):e15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kalgutkar AS, Obach AR, Maurer TS. Mechanism-based inactivation of Cytochrome P450 enzymes chemical mechanisms, structure-activity relationships, and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr Drug Metab. 2007;8(5):407–47.

    Article  CAS  PubMed  Google Scholar 

  13. Grimm SW, Einolf HJ, Hall SD, He K, Lim HK, Ling KHJ, et al. The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: a perspective of the Pharmaceutical Research and Manufacturers of America. Drug Metab Dispos. 2009;37(7):1355–70.

    Article  CAS  PubMed  Google Scholar 

  14. Kupiec T, Raj V. Fatal seizures due to potential herb-drug interactions with Ginkgo biloba. J Anal Toxicol. 2005;29(7):755–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mamindla S, Kvsrg P, Koganti B. Herb-drug interactions: an overview of mechanisms and clinical aspects. Int J Pharm Sci Res. 2016;7(9):3576–86.

    CAS  Google Scholar 

  16. Gurley BJ, Swain A, Hubbard MA, Williams DK, Barone G, Hartsfield F, et al. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: effects of milk thistle, black cohosh, goldenseal, kava kava, St. John’s wort, and Echinacea. Mol Nutr Food Res. 2008;52(7):755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Khan IA, et al. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes. Clin Pharmacol Ther. 2005;77(5):415–26.

    Article  CAS  PubMed  Google Scholar 

  18. Showande JS, Fakeye TO, Tolonen A, Hokkanen J. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family Malvaceae) on selected cytochrome P450 isoforms. Afr J Tradit Complement Altern Med AJTCAM. 2013;10(3):533–40.

    Google Scholar 

  19. Gbolade AA. Inventory of antidiabetic plants in selected districts of Lagos State, Nigeria. J Ethnopharmacol. 2009;121(1):135–9.

    Article  PubMed  Google Scholar 

  20. Borokini TI, Ighere DA, Clement M, Ajiboye TO, Alowonle AA. Ethnobiological survey of traditional medicine practice for the treatment of piles and diabetes mellitus in Oyo State. J Med Plant Stud. 2013;1:30–40.

    Google Scholar 

  21. Ezuruike U, Prieto JM. Assessment of potential herb-drug interactions among Nigerian adults with type-2 diabetes. Front Pharmacol. 2016;10(7):248.

    Google Scholar 

  22. Al-awar MSA, Muaqeb AAA, Salih EMA. Antihyperglycemic and hypolipidemic effect of Azadirachta indica leaves aqueous extract in alloxan-induced diabetic male rabbits. Int J Pharm Biol Arch. 2018;9(1):47–51.

    Google Scholar 

  23. Ejike CECC, Awazie SO, Nwangozi PA, Godwin CD. Synergistic postprandial blood glucose modulatory properties of Vernonia amygdalina (Del.), Gongronema latifolium (Benth.) and Ocimum gratissimum (Linn.) aqueous decoctions. J Ethnopharmacol. 2013;149(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  24. Khan W, Parveen R, Chester K, Parveen S, Ahmad A. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front Pharmacol. 2017;12(8):577.

    Article  CAS  Google Scholar 

  25. Okon U, Owo D, Udokang N, Udobang J, Ekpenyong C. Oral administration of aqueous leaf extract of Ocimum gratissimum ameliorates polyphagia, polydipsia and weight loss in streptozotocin-induced diabetic rats. Am J Med Med Sci. 2012;2(3):45–9.

    Article  Google Scholar 

  26. Okonta JM, Aguwa CN. Evaluation of the hypoglycemic activity of glycosides and alkaloids extracts of Picralima nitida stapf (Apocynaceae) seed. Int J Pharmacol. 2007;3(6):505–9.

    Article  CAS  Google Scholar 

  27. Zenebe MM, Dessie BK, Wana GG, Werkneh AA. Isolation, structural elucidation, and bioactivity studies of leaf extract of Vernonia amygdalina. Am J Appl Chem. 2015;3(1):14–20.

    Article  CAS  Google Scholar 

  28. Akinmoladun AC, Ibukun EO, Afor E, Obuotor EM, Farombi EO. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Sci Res Essays. 2007;2(5):163–6.

    Google Scholar 

  29. Konmy BB, Olounladé PA, Allou SD, Azando EVB, Hounzangbé-Adoté MS, Olounladé CPA. A review on phytochemistry and pharmacology of Moringa oleifera leaves (Moringaceae). J Pharmacogn Phytochem. 2016;5(5):325–30.

    Google Scholar 

  30. Erharuyi O, Falodun A, Langer P. Medicinal uses, phytochemistry and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: a review. Asian Pac J Trop Med. 2014;7:1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci. 2002;82(11):1336–45.

    CAS  Google Scholar 

  32. Orellana-Paucar A, Vintimilla-Rojas D. Interactions of clinical relevance associated with concurrent administration of prescription drug and food or medicinal plants: a systematic review protocol. Systems Control Found Appl. 2020. https://doi.org/10.1186/s13643-019-1259-2.

    Article  Google Scholar 

  33. Ameade EPK, Ibrahim M, Ibrahim H-S, Habib RH, Gbedema SY. Concurrent use of herbal and orthodox medicines among residents of Tamale, Northern Ghana, who patronize hospitals and herbal clinics. Evid Based Complement Altern Med. 2018. https://doi.org/10.1155/2018/1289125.

    Article  Google Scholar 

  34. Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr. 2017;9(1):1–12.

    Article  CAS  Google Scholar 

  35. Aluefua OF, Chika A, Muhammad AA, Usman A. Interactions between herbs and antidiabetic drugs: a systematic review. Res J Pharmacol. 2017;11(5):6–17.

    Google Scholar 

  36. Zimmerlin A, Trunzer M, Faller B. CYP3A time-dependent inhibition risk assessment validated with 400 reference drugs. Drug Metab Dispos. 2011;39(6):1039–46.

    Article  CAS  PubMed  Google Scholar 

  37. Yates P, Eng H, Di L, Obach RS. Statistical methods for analysis of time-dependent inhibition of cytochrome P450 enzymes. Drug Metab Dispos. 2012;40(12):2289–96.

    Article  CAS  PubMed  Google Scholar 

  38. Showande SJ, Fakeye TO, Kajula M, Hokkanen J, Tolonen A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs—implication for herb–drug interactions. Food Sci Nutr. 2019. https://doi.org/10.1002/fsn3.789.

    Article  PubMed  Google Scholar 

  39. Awortwe C, Bouic P, Masimirembwa C, Rosenkranz B. Inhibition of major drug metabolizing CYPs by common herbal medicines used by HIV/AIDS patients in Africa–implications for herb-drug interactions. Drug Metab Lett. 2014;7(2):83–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos. 2014;42(3):301–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gunes A, Dahl ML. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008;9(5):625–37.

    Article  CAS  PubMed  Google Scholar 

  42. Thelingwani RS, Dhansay K, Smith P, Chibale K, Masimirembwa CM. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa. Xenobiotica. 2012;42(10):989–1000.

    Article  CAS  PubMed  Google Scholar 

  43. Fasinu PS, Gutmann H, Schiller H, James AD, Bouic PJ, Rosenkranz B. The potential of sutherlandia frutescens for herb-drug interaction. Drug Metab Dispos. 2013;41(2):488–97.

    Article  CAS  PubMed  Google Scholar 

  44. Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Czerwinski M, Parkinson O. Biotransformation of xenobiotics. In: Casarett and Soull's toxicology, the basic science of poisons. 8th ed McGraw-Hill Education; 2013. p. 186–363.

  45. Thomford NE, Dzobo K, Chopera D, Wonkam A, Maroyi A, Blackhurst D, et al. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: Implications for herb-drug interactions. Molecules. 2016;21(2):211.

    Article  PubMed Central  CAS  Google Scholar 

  46. Yi JM, Kim YA, Lee YJ, Bang OS, Kim NS. Effect of an ethanol extract of Descurainia sophia seeds on Phase I and II drug metabolizing enzymes and P-glycoprotein activity in vitro. BMC Complement Altern Med. 2015. https://doi.org/10.1186/s12906-015-0965-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kaspera R, Naraharisetti SB, Evangelista EA, Marciante KD, Psaty BM, Totah RA. Drug metabolism by CYP2C8.3 is determined by substrate dependent interactions with cytochrome P450 reductase and cytochrome b5. Biochem Pharmacol. 2011;82:681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and clinical considerations. J Personal Med. 2018;8(1):1.

    Article  Google Scholar 

  49. Lau C, Mooiman KD, Maas-Bakker RF, Beijnen JH, Schellens JHM, Meijerman I. Effect of Chinese herbs on CYP3A4 activity and expression in vitro. J Ethnopharmacol. 2013;149(2):543–9.

    Article  CAS  PubMed  Google Scholar 

  50. Chiangsom A, Lawanprasert S, Oda S, Kulthong K, Luechapudiporn R, Yokoi T, et al. Inhibitory and inductive effects of Phikud Navakot extract on human cytochrome P450. Drug Metab Pharmacokinet. 2016;31(3):210–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Steven LJ. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69–76.

    Article  PubMed  Google Scholar 

  52. Gopisankar MG. CYP2D6 pharmacogenomics. Egypt J Med Hum Genet. 2017;18(4):309–13.

    Article  Google Scholar 

  53. Monera TG, Wolfe AR, Maponga CC, Benet LZ, Guglielmo J. Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4. J Infect Dev Ctries. 2008;2(5):379–83.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Awortwe C, Manda V, Avonto C, Khan S, Khan I, Walker L, et al. In vitro evaluation of reversible and time-dependent inhibitory effects of Kalanchoe crenata on CYP2C19 and CYP3A4 Activities. Drug Metab Lett. 2015;9:48–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taesotikul T, Navinpipatana V, Tassaneeyakul W. Selective inhibition of human cytochrome P450 1A2 by Moringa oleifera. J Pharmacol. 2010;32(1):256–8.

    Google Scholar 

  56. Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710.

    Article  CAS  PubMed  Google Scholar 

  57. VandenBrink BM, Isoherranen N. The role of metabolites in predicting drug-drug interactions: Focus on irreversible cytochrome P450 inhibition. Curr Opin Drug Discov Dev. 2010;13(1):66–77.

    CAS  Google Scholar 

  58. Mustapíc DŠ, Debeljak Ž, Maleš Ž, Bojíc M. The inhibitory effect of flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. Molecules. 2018;23(10):2553.

    Article  CAS  Google Scholar 

  59. Atkinson A, Kenny JR, Grime K. Automated assessment of time-dependent inhibition of human cytochrome P450 enzymes using liquid chromatography-tandem mass spectrometry analysis. Drug Metab Dispos. 2005;23(10):2553.

    Google Scholar 

  60. Riley RJ, Wilson CE. Cytochrome P450 time-dependent inhibition and induction: advances in assays, risk analysis and modelling. Expert Opin Drug Metab Toxicol. 2015;11(4):557–72.

    Article  CAS  PubMed  Google Scholar 

  61. Thomford NE, Dzobo K, Chopera D, Wonkam A, Skelton M, Blackhurst D, et al. Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals. 2015;8(3):637–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong SG, Lee M, Wong BK. Single concentration loss of activity assay provides an improved assessment of drug–drug interaction risk compared to IC50-shift. Xenobiotica. 2016;46(11):953–66.

    Article  CAS  PubMed  Google Scholar 

  63. Kosaka M, Kosugi Y, Hirabayashi H. Risk assessment using cytochrome P450 time-dependent inhibition assays at single time and concentration in the early stage of drug discovery. J Pharm Sci. 2017;106(9):2838–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pfizer Inc. Pharmacokinetics, Dynamics and Metabolism Research Unit, Groton, CT, USA, for their help with the enzyme inhibition assay and generous donation of resources and Hang Ma for his assistance with the extraction of the medicinal plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Slitt.

Ethics declarations

Funding

This study was supported by funding made available through the Fulbright Foreign Students Scholarship to Ogochukwu Amaeze and the National Institute of Health (Grant Number P42ES027706). The funders had no role in the study design, data collection, analysis, decision to publish or manuscript preparation.

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Availability of data and material

The datasets generated during and analyzed during the current study are freely available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design. Ogochukwu Amaeze performed the extraction of the medicinal plants. Heather Eng and Lauren Horlbogen performed the enzyme inhibition experiments. Data analysis was carried out by Ogochukwu Amaeze, Heather Eng, Lauren Horlbogen and Angela Slitt. Ogochukwu Amaeze wrote the first draft of the manuscript; all authors edited and commented on previous versions of the manuscript. Manthena Varma and Angela Slitt performed critical revision of the manuscript for important intellectual content. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaeze, O., Eng, H., Horlbogen, L. et al. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur J Drug Metab Pharmacokinet 46, 437–450 (2021). https://doi.org/10.1007/s13318-021-00685-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-021-00685-1

Navigation