Skip to main content
Log in

Parameterization of Microsomal and Cytosolic Scaling Factors: Methodological and Biological Considerations for Scalar Derivation and Validation

  • Current Opinion
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Mathematical models that can predict the kinetics of compounds have been increasingly adopted for drug development and risk assessment. Data for these models may be generated from in vitro experimental systems containing enzymes contributing to metabolic clearance, such as subcellular tissue fractions including microsomes and cytosol. Extrapolation from these systems is facilitated by common scaling factors, known as microsomal protein per gram (MPPG) and cytosolic protein per gram (CPPG). Historically, parameterization of MPPG and CPPG has employed the use of recovery factors, commonly benchmarked to cytochromes P450 which work well in some contexts, but could be problematic for other enzymes. Here, we propose absolute quantification of protein content and supplementary assays to evaluate microsomal/cytosolic purity that should be employed. Examples include calculation of microsomal latency by mannose-6-phosphatase activity and immunoblotting of subcellular fractions with fraction-specific markers. Further considerations include tissue source, as disease states can affect enzyme expression and activity, and the methodology used for scalar parameterization. Regional- and organ-specific expression of enzymes, in addition to differences in organ physiology, is another important consideration. Because most efforts have focused on the liver that is, for the most part, homogeneous, derived scalars may not capture the heterogeneity of other major tissues contributing to xenobiotic metabolism including the kidneys and small intestine. Better understanding of these scalars, and how to appropriately derive them from extrahepatic tissues can provide support to the inferences made with physiologically based pharmacokinetic modeling, increase its accuracy in characterizing in vivo drug pharmacokinetics, and improve confidence in go-no-go decisions for clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14.

    CAS  PubMed  Google Scholar 

  2. Calcoen D, Elias L, Yu X. What does it take to produce a breakthrough drug? Nat Rev Drug Discov. 2015;14:161–2.

    PubMed  Google Scholar 

  3. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.

    CAS  PubMed  Google Scholar 

  4. Villeneuve DL, Coady K, Escher BI, Mihaich E, Murphy CA, Schlekat T, et al. High-throughput screening and environmental risk assessment: state of the science and emerging applications. Environ Toxicol Chem. 2019;38:12–26.

    CAS  PubMed  Google Scholar 

  5. Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 2016;6:430–40.

    PubMed  PubMed Central  Google Scholar 

  6. Pelkonen O, Turpeinen M. In vitro–in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica. 2007;37:1066–89.

    CAS  PubMed  Google Scholar 

  7. Pelkonen O, Turpeinen M, Uusitalo J, Rautio A, Raunio H. Prediction of drug metabolism and interactions on the basis of in vitro investigations. Basic Clin Pharmacol Toxicol. 2005;96:167–75.

    CAS  PubMed  Google Scholar 

  8. Brooks HB, Geeganage S, Kahl SD, Montrose C, Sittampalam S, Smith MC. Basics of enzymatic assays for HTS. Assay Guid Man [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences. 2004. http://www.ncbi.nlm.nih.gov/books/NBK92007/. Accessed 25 Jul 2020.

  9. Michelsen U, von Hagen J. Isolation of subcellular organelles and structures. Methods Enzymol. 2009;463:305–28.

    CAS  PubMed  Google Scholar 

  10. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33:337–49.

    CAS  PubMed  Google Scholar 

  11. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem. 2001;276:38388–93.

    CAS  PubMed  Google Scholar 

  12. Lübke T, Lobel P, Sleat DE. Proteomics of the lysosome. Lysosomes. 2009;1793:625–35.

    Google Scholar 

  13. Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol. 2008;21:70–83.

    CAS  PubMed  Google Scholar 

  14. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45:1121–32.

    CAS  PubMed  Google Scholar 

  15. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2004;45:51–88.

    Google Scholar 

  16. Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, et al. Human sulfotransferases and their role in chemical metabolism. Toxicol Sci. 2005;90:5–22.

    PubMed  Google Scholar 

  17. Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev. 2008;40:479–510.

    CAS  PubMed  Google Scholar 

  18. Cubitt HE, Houston JB, Galetin A. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Drug Metab Dispos. 2011;39:864–73.

    CAS  PubMed  Google Scholar 

  19. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8:33–45.

    CAS  PubMed  Google Scholar 

  20. Millecam J, De Clerck L, Govaert E, Devreese M, Gasthuys E, Schelstraete W, et al. The ontogeny of cytochrome P450 enzyme activity and protein abundance in conventional pigs in support of preclinical pediatric drug research. Front Pharmacol. 2018;9:470.

    PubMed  PubMed Central  Google Scholar 

  21. Smith R, Jones RDO, Ballard PG, Griffiths HH. Determination of microsome and hepatocyte scaling factors for in vitro/in vivo extrapolation in the rat and dog. Xenobiotica. 2008;38:1386–98.

    CAS  PubMed  Google Scholar 

  22. Shibany KA, Tötemeyer S, Pratt SL, Paine SW. The effects of aging on hepatic microsomal scaling factor and hepatocellularity number in the horse. Xenobiotica. 2018;48:1237–44.

    CAS  PubMed  Google Scholar 

  23. Pacifici GM, Franchi M, Bencini C, Repetti F, Di Lascio N, Muraro GB. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 1988;18:849–56.

    CAS  PubMed  Google Scholar 

  24. Mutch E, Nave R, McCracken N, Zech K, Williams FM. The role of esterases in the metabolism of ciclesonide to desisobutyryl-ciclesonide in human tissue. Biochem Pharmacol. 2007;73:1657–64.

    CAS  PubMed  Google Scholar 

  25. Lipscomb JC, Teuschler LK, Swartout JC, Striley CAF, Snawder JE. Variance of microsomal protein and cytochrome P450 2E1 and 3A forms in adult human liver. Toxicol Mech Methods. 2003;13:45–51.

    CAS  PubMed  Google Scholar 

  26. Pelkonen O, Kaltiala EH, Larmi TKI, Kärki NT. Comparison of activities of drug-metabolizing enzymes in human fetal and adult livers. Clin Pharmacol Ther. 1973;14:840–6.

    CAS  PubMed  Google Scholar 

  27. Bäärnhielm C, Dahlbäck H, Skånberg I. In vivo pharmacokinetics of felodipine predicted from in vitro studies in rat, dog and man. Acta Pharmacol Toxicol (Copenh). 1986;59:113–22.

    Google Scholar 

  28. Gibbs JP, Yang J-S, Slattery JT. Comparison of human liver and small intestinal glutathione S-transferase-catalyzed busulfan conjugation in vitro. Drug Metab Dispos. 1998;26:52–5.

    CAS  PubMed  Google Scholar 

  29. Boogaard PJ, Sumner SC-J, Bond JA. Glutathione conjugation of 1,2:3,4-diepoxybutane in human liver and rat and mouse liver and lung in vitro. Toxicol Appl Pharmacol. 1996;136:307–16.

    CAS  PubMed  Google Scholar 

  30. Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro–in vivo extrapolation (IV–IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016;81:1153–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Scotcher D, Billington S, Brown J, Jones CR, Brown CDA, Rostami-Hodjegan A, et al. Microsomal and cytosolic scaling factors in dog and human kidney cortex and application for in vitro-in vivo extrapolation of renal metabolic clearance. Drug Metab Dispos. 2017;45:556–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bruyère A, Declèves X, Bouzom F, Ball K, Marques C, Treton X, et al. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol Pharm. 2010;7:1596–607.

    PubMed  Google Scholar 

  33. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  35. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    CAS  PubMed  Google Scholar 

  36. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    CAS  PubMed  Google Scholar 

  37. Gerhardt B, Beevers H. Influence of sucrose on protein determination by the Lowry procedure. Anal Biochem. 1968;24:337–9.

    CAS  PubMed  Google Scholar 

  38. Schoene B, Fleischmann RA, Remmer H, Oldershausen HF. Determination of drug metabolizing enzymes in needle biopsies of human liver. Eur J Clin Pharmacol. 1972;4:65–73.

    CAS  PubMed  Google Scholar 

  39. Lipscomb JC, Fisher JW, Confer PD, Byczkowski JZ. In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicol Appl Pharmacol. 1998;152:376–87.

    CAS  PubMed  Google Scholar 

  40. Matsubara T, Koike M, Touchi A, Tochino Y, Sugeno K. Quantitative determination of cytochrome P-450 in rat liver homogenate. Anal Biochem. 1976;75:596–603.

    CAS  PubMed  Google Scholar 

  41. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–8.

    CAS  PubMed  Google Scholar 

  42. Song W, Yu L, Peng Z. Targeted label-free approach for quantification of epoxide hydrolase and glutathione transferases in microsomes. Anal Biochem. 2015;478:8–13.

    CAS  PubMed  Google Scholar 

  43. Guengerich FP, Martin MV, Sohl CD, Cheng Q. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat Protoc. 2009;4:1245–51.

    CAS  PubMed  Google Scholar 

  44. Pearce RE, McIntyre CJ, Madan A, Sanzgiri U, Draper AJ, Bullock PL, et al. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys. 1996;331:145–69.

    CAS  PubMed  Google Scholar 

  45. Walsky RL, Obach RS. Validated assays for human cytochrome P450 activities. Drug Metab Dispos. 2004;32:647–60.

    CAS  PubMed  Google Scholar 

  46. Xu M, Saxena N, Vrana M, Zhang H, Kumar V, Billington S, et al. A targeted LC-MS/MS proteomics-based strategy to characterize in vitro models used in drug metabolism and transport studies. Anal Chem. 2018;90:11873–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Klont F, Bras L, Wolters JC, Ongay S, Bischoff R, Halmos GB, et al. Assessment of sample preparation bias in mass spectrometry-based proteomics. Anal Chem. 2018;90:5405–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wegler C, Gaugaz FZ, Andersson TB, Wiśniewski JR, Busch D, Gröer C, et al. Variability in mass spectrometry-based quantification of clinically relevant drug transporters and drug metabolizing enzymes. Mol Pharm. 2017;14:3142–51.

    CAS  PubMed  Google Scholar 

  49. Prasad B, Achour B, Artursson P, Hop CE, Lai Y, Smith PC, et al. Toward a consensus on applying quantitative liquid chromatography-tandem mass spectrometry proteomics in translational pharmacology research: a white paper. Clin Pharmacol Ther. 2019;106:525–43.

    PubMed  Google Scholar 

  50. Joly JG, Doyon C, Pesant Y. Cytochrome P-450 measurement in at liver homogenate and microsomes. Drug Metab Dispos. 1975;3:577–86.

    CAS  PubMed  Google Scholar 

  51. Xie J, Saburulla NF, Chen S, Wong SY, Yap ZP, Zhang LH, et al. Evaluation of carbazeran 4-oxidation and O6-benzylguanine 8-oxidation as catalytic markers of human aldehyde oxidase: impact of cytosolic contamination of liver microsomes. Drug Metab Dispos. 2019;47:26–37.

    CAS  PubMed  Google Scholar 

  52. Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors. Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020;34:101530.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nishiyama Y, Nakayama SMM, Watanabe KP, Kawai YK, Ohno M, Ikenaka Y, et al. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats. J Vet Med Sci. 2016;78:675–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Girard H, Thibaudeau J, Court MH, Fortier L-C, Villeneuve L, Caron P, et al. UGT1A1 polymorphisms are important determinants of dietary carcinogen detoxification in the liver. Hepatology. 2005;42:448–57.

    CAS  PubMed  Google Scholar 

  55. Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos. 2009;37:2087–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hardwick RN, Ferreira DW, More VR, Lake AD, Lu Z, Manautou JE, et al. Altered UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2012;41:554–61.

    PubMed  Google Scholar 

  57. Lu L, Zhou J, Shi J, Peng X, Qi X, Wang Y, et al. Drug-metabolizing activity, protein and gene expression of UDP-glucuronosyltransferases are significantly altered in hepatocellular carcinoma patients. PLoS ONE. 2015;10:e0127524.

    PubMed  PubMed Central  Google Scholar 

  58. Nekvindova J, Mrkvicova A, Zubanova V, Hyrslova Vaculova A, Anzenbacher P, Soucek P, et al. Hepatocellular carcinoma: gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Biochem Pharmacol. 2020;177:113912.

    CAS  PubMed  Google Scholar 

  59. Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, et al. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Dispos. 2015;43:611–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilson A, Urquhart BL, Ponich T, Chande N, Gregor JC, Beaton M, et al. Crohn’s disease is associated with decreased CYP3A4 and P-glycoprotein protein expression. Mol Pharm. 2019;16:4059–64.

    CAS  PubMed  Google Scholar 

  61. Ladda MA, Goralski KB. The effects of CKD on cytochrome P450-mediated drug metabolism. Adv Chronic Kidney Dis. 2016;23:67–75.

    PubMed  Google Scholar 

  62. Hardwick RN, Fisher CD, Canet MJ, Lake AD, Cherrington NJ. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2010;38:2293–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hayes PC, May L, Hayes JD, Harrison DJ. Glutathione S-transferases in human liver cancer. Gut. 1991;32:1546–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yalcin EB, More V, Neira KL, Lu ZJ, Cherrington NJ, Slitt AL, et al. Downregulation of sulfotransferase expression and activity in diseased human livers. Drug Metab Dispos. 2013;41:1642–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Xie C, Yan T, Chen J, Li X, Zou J, Zhu L, et al. LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine. Sci Rep. 2017;7:3858.

    PubMed  PubMed Central  Google Scholar 

  66. Chuang S-T, Chu P, Sugimura J, Tretiakova MS, Papavero V, Wang K, et al. Overexpression of glutathione S-transferase α in clear cell renal cell carcinoma. Am J Clin Pathol. 2005;123:421–9.

    CAS  PubMed  Google Scholar 

  67. Wahab PJ, Peters WH, Roelofs HM, Jansen JB. Glutathione S-transferases in small intestinal mucosa of patients with coeliac disease. Jpn J Cancer Res. 2001;92:279–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang H, Gao N, Tian X, Liu T, Fang Y, Zhou J, et al. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo. Sci Rep. 2015;5:17671.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. De Bock L, Boussery K, De Bruyne R, Van Winckel M, Stephenne X, Sokal E, et al. Microsomal protein per gram of liver (MPPGL) in paediatric biliary atresia patients. Biopharm Drug Dispos. 2014;35:308–12.

    PubMed  Google Scholar 

  70. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36:2405–9.

    CAS  PubMed  Google Scholar 

  71. El-Khateeb E, Achour B, Scotcher D, Al-Majdoub ZM, Athwal V, Barber J, et al. Scaling factors for clearance in adult liver cirrhosis. Drug Metab Dispos. 2020;48:1271–82.

    CAS  PubMed  Google Scholar 

  72. Hatley OJD, Jones CR, Galetin A, Rostami-Hodjegan A. Optimization of intestinal microsomal preparation in the rat: a systematic approach to assess the influence of various methodologies on metabolic activity and scaling factors. Biopharm Drug Dispos. 2017;38:187–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Coughtrie MW, Blair JN, Hume R, Burchell A. Improved preparation of hepatic microsomes for in vitro diagnosis of inherited disorders of the glucose-6-phosphatase system. Clin Chem. 1991;37:739–42.

    CAS  PubMed  Google Scholar 

  74. Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 2017;11:622–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Watkins PB, Murray SA, Thomas PE, Wrighton SA. Distribution of cytochromes P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase in an entire human liver. Biochem Pharmacol. 1990;39:471–6.

    CAS  PubMed  Google Scholar 

  76. Abanda NN, Riches Z, Collier AC. Lobular distribution and variability in hepatic ATP binding cassette protein B1 (ABCB1, P-gp): ontogenetic differences and potential for toxicity. Pharmaceutics. 2017;9:8.

    PubMed Central  Google Scholar 

  77. Riches Z, Abanda N, Collier AC. BCRP protein levels do not differ regionally in adult human livers, but decline in the elderly. Chem Biol Interact. 2015;242:203–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lerman LO, Flickinger AL, Sheedy PFI, Turner ST. Reproducibility of human kidney perfusion and volume determinations with electron beam computed tomography. Invest Radiol. 1996;31:204–10.

    CAS  PubMed  Google Scholar 

  79. Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 2014;85:677–85.

    CAS  PubMed  Google Scholar 

  80. Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28:2838–44.

    PubMed  PubMed Central  Google Scholar 

  81. Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol. 2010;300:F356–71.

    PubMed  PubMed Central  Google Scholar 

  82. Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. Am J Physiol Renal Physiol. 2010;300:F372–84.

    PubMed  PubMed Central  Google Scholar 

  83. Weinstein AM. A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient. Am J Physiol Renal Physiol. 2001;280:F1072–92.

    CAS  PubMed  Google Scholar 

  84. Weinstein AM. A mathematical model of rat proximal tubule and loop of Henle. Am J Physiol Renal Physiol. 2015;308:F1076–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Weinstein AM. A mathematical model of the rat nephron: glucose transport. Am J Physiol Renal Physiol. 2015;308:F1098–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Peters SA, Jones CR, Ungell A-L, Hatley OJD. Predicting drug extraction in the human gut wall: assessing contributions from drug metabolizing enzymes and transporter proteins using preclinical models. Clin Pharmacokinet. 2016;55:673–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, et al. Protein abundance of clinically relevant drug-metabolizing enzymes in the human liver and intestine: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2018;104:515–24.

    CAS  PubMed  Google Scholar 

  88. Fritz A, Busch D, Lapczuk J, Ostrowski M, Drozdzik M, Oswald S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: an intra-subject analysis. Basic Clin Pharmacol Toxicol. 2019;124:245–55.

    CAS  PubMed  Google Scholar 

  89. Heikkinen AT, Friedlein A, Lamerz J, Jakob P, Cutler P, Fowler S, et al. Mass spectrometry-based quantification of CYP enzymes to establish in vitro/in vivo scaling factors for intestinal and hepatic metabolism in beagle dog. Pharm Res. 2012;29:1832–42.

    CAS  PubMed  Google Scholar 

  90. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    PubMed  Google Scholar 

  91. Miners JO, Knights KM, Houston JB, Mackenzie PI. In vitro–in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol. 2006;71:1531–9.

    CAS  PubMed  Google Scholar 

  92. Sukhodub AL, Burchell A. Preparation of intact microsomes from cultured mammalian H4IIE cells. J Pharmacol Toxicol Methods. 2005;52:330–4

    CAS  PubMed  Google Scholar 

  93. Nelson AC, Huang W, Moody DE. Variables in human liver microsome preparation: impact on the kinetics of L-α-acetylmethadol (LAAM) N-demethylation and dextromethorphan O-demethylation. Drug Metab Dispos. 2001;29:319.

    CAS  PubMed  Google Scholar 

  94. Arion WJ, Ballas LM, Lange AJ, Wallin BK. Microsomal membrane permeability and the hepatic glucose-6-phosphatase system. Interactions of the system with D-mannose 6-phosphate and D-mannose. J Biol Chem. 1976;251:4901–7.

    CAS  Google Scholar 

  95. van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;362:513–32.

    PubMed  PubMed Central  Google Scholar 

  96. Arion WJ. Measurement of intactness of rat liver endoplasmic reticulum. Methods Enzymol. 1989;174:58–67

    CAS  PubMed  Google Scholar 

  97. Burchell A, Hume R, Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta. 1988;173:183–91.

    CAS  PubMed  Google Scholar 

  98. Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6:2152–60.

    CAS  PubMed  Google Scholar 

  99. Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abby C. Collier.

Ethics declarations

Funding

MJD is supported by an Alexander Graham Bell Canada Graduate Scholarship from the National Science and Engineering Council of Canada (NSERC), and the Frank S. Abbott Graduate Fellowship in Pharmaceutical Sciences. ACC holds research grants from the NSERC Discovery Grants Program (17-3808), and a Genentech Research Grant that supported this work.

Conflict of interest

The authors declare no real or perceived conflicts of interest. No Genentech products are researched or discussed in this manuscript.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author Contributions

All authors significantly contributed to the writing and editing of the manuscript content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doerksen, M.J., Jones, R.S., Coughtrie, M.W.H. et al. Parameterization of Microsomal and Cytosolic Scaling Factors: Methodological and Biological Considerations for Scalar Derivation and Validation. Eur J Drug Metab Pharmacokinet 46, 173–183 (2021). https://doi.org/10.1007/s13318-020-00666-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00666-w

Navigation