Skip to main content
Log in

The Impact of Fasting on Major Metabolic Pathways of Macronutrients and Pharmacokinetics Steps of Drugs

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

In this review, we have investigated how fasting promotes an adaptive cross-talk between different hormones and metabolic pathways to supply and meet the body’s daily energy demands. We highlight in biochemical terms and mechanisms how fasting impacts four metabolic pathways—glycogenolysis, gluconeogenesis, amino acid oxidation, and fatty acid β-oxidation—that are actively engaged in the metabolism of carbohydrates, proteins, and lipids. Fasting results in reduced insulin secretion and increased glucagon and epinephrine release to prevent or stimulate metabolic reaction(s). Fasting stimulates glycogenolysis, amino acid and glucose oxidation, aminotransferase reactions in skeletal muscle, and promotes gluconeogenesis and urea production in the liver. In addition, fasting promotes gene expression of lipid metabolism in skeletal muscle, the synthesis of ketone bodies in the liver, and intracellular hormone-sensitive lipase activity in adipose tissue. Furthermore, the impact of fasting on reducing cellular damage by mitochondrial reactive oxygen species is discussed. Lastly, we briefly describe the impact of fasting on the four steps of pharmacokinetics—the absorption, distribution, metabolism, and excretion of a few select drugs—with an emphasis on the elimination of drugs related to the cytochrome-P450 family of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014. https://doi.org/10.1016/j.cmet.2013.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kastner M, Burroughs H. Alternative healing: the complete A–Z guide to over 160 different alternative therapies. 1st ed. Peterborough: Halcyon Pub; 1993.

    Google Scholar 

  3. Sarabhai T, Roden M. Hungry for your alanine: when liver depends on muscle proteolysis. J Clin Invest. 2019. https://doi.org/10.1172/JCI131931.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beshyah S. The year in Ramadan fasting research. Ibnosina J Med Biomed Sci. (2017). https://www.ijmbs.org/article.asp?issn=1947-489X;year=2018;volume=10;issue=2;spage=39;epage=53;aulast=Beshyah. Accessed 7 Jul 2020.

  5. Haghdoost AA, Poorranjbar M. The interaction between physical activity and fasting on the serum lipid profile during Ramadan. Singap Med J. 2009;50(9):897–901.

    CAS  Google Scholar 

  6. Saleh Mansi KM. Study the effects of Ramadan fasting on the serum glucose and lipid profile among healthy Jordanian students. Am J Appl Sci. 2007. https://doi.org/10.3844/ajassp.2007.565.569.

    Article  Google Scholar 

  7. Larijani B, Zahedi F, Sanjari M, et al. The effect of Ramadan fasting on fasting serum glucose in healthy adults. Med J Malays. 2003;58(5):678–80.

    CAS  Google Scholar 

  8. South-Paul J, Matheny S, et al. Current diagnosis and treatment: family medicine, 5e. 2020. https://accessmedicine-mhmedical-com.proxy.lib.pacificu.edu:2443/book.aspx?bookid=2934&isMissingChapter=true. Accessed 7 Jul 2020.

  9. Anton SD, Moehl K, Donahoo WT, et al. Flipping the metabolic switch: understanding and applying health benefits of fasting. Obesity (Silver Spring). 2018. https://doi.org/10.1002/oby.22065.

    Article  Google Scholar 

  10. Longo VD, Antebi A, Bartke A, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015. https://doi.org/10.1111/acel.12338.

    Article  PubMed  PubMed Central  Google Scholar 

  11. DiTullio D, Dell’Angelica E. Fundamentals of biochemistry: medical course and step 1 review. 2019. https://accesspharmacy-mhmedical-com.proxy.lib.pacificu.edu:2443/book.aspx?bookid=2492&isMissingChapter=true. Accessed 7 Jul 2020.

  12. Prentice W. Nutrition and supplements. In: Principles of athletic training: a guide to evidence-based clinical practice, 16e. 2014. https://accessphysiotherapy.mhmedical.com.proxy.lib.pacificu.edu:2048/content.aspx?bookid=2429&sectionid=189095651. Accessed May 24, 2020.

  13. Key recommendations: components of healthy eating patterns. Dietary guidelines 2015–2020. |https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/chapter-1/key-recommendations/#footnote-4. Accessed 7 Jul 2020.

  14. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015. https://doi.org/10.1186/2046-4053-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA Clin. 2016. https://doi.org/10.1016/j.bbacli.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rodwell VW, Bender DA, Botham KM, Kennelly PJ, Weil PA. Harper’s illustrated biochemistry. 31st ed. New York: McGraw-Hill Education; 2018. https://accessmedicine.mhmedical.com/content.aspx?bookid=2386&sectionid=187832197.

    Google Scholar 

  17. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr. 2012. https://doi.org/10.3945/an.112.002089.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karimi R. Biomedical and pharmaceutical sciences with patient care correlations. Burlington: Jones & Bartlett Learning; 2015.

    Google Scholar 

  19. Han H, Kang G, Kim J, et al. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016. https://doi.org/10.1038/emm.2015.122.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berg JM, Stryer L, Tymoczko J, Gatto G. Chapter 21: biochemistry. 9th ed. New York: WH Freeman; 2019.

    Google Scholar 

  21. Melkonian EA, Schury MP. Biochemistry, anaerobic glycolysis. In: StatPearls. StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK546695/. Accessed 7 Jul 2020.

  22. Reitman ML. FGF21: a missing link in the biology of fasting. Cell Metab. 2007. https://doi.org/10.1016/j.cmet.2007.05.010.

    Article  PubMed  Google Scholar 

  23. Cherrington AD, Fuchs H, Stevenson RW, Williams PE, Alberti KG, Steiner KE. Effect of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight-fasted dogs. Am J Physiol. 1984. https://doi.org/10.1152/ajpendo.1984.247.2.E137.

    Article  PubMed  Google Scholar 

  24. Rodwell V, Bender D, et al. Harper’s illustrated biochemistry, 31st edn. 2018. https://accessmedicine-mhmedical-com.proxy.lib.pacificu.edu:2443/book.aspx?bookid=2386&isMissingChapter=true. Accessed 7 Jul 2020.

  25. Dufour S, Lebon V, Shulman GI, Petersen KF. Regulation of net hepatic glycogenolysis and gluconeogenesis by epinephrine in humans. Am J Physiol Endocrinol Metab. 2009. https://doi.org/10.1152/ajpendo.00222.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mirzaei B, Rahmani-Nia F, Moghadam MG, Ziyaolhagh SJ, Rezaei A. The Effect of Ramadan fasting on biochemical and performance parameters in collegiate wrestlers. Iran J Basic Med Sci. 2012;15(6):1215–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Funk J. Chapter 18: disorders of the endocrine pancreas. Pathophysiology of disease: an introduction to clinical medicine, 8e. 2020. https://accesspharmacy.mhmedical.com/content.aspx?bookid=2468&sectionid=198223689. Accessed 26 Jul 2020.

  28. King M. Chapter 34: nitrogen: metabolic integration. Integrative medical biochemistry examination and board review. 2014. https://accesspharmacy-mhmedical-com.proxy.lib.pacificu.edu:2443/content.aspx?bookid=1696&sectionid=111399747. Accessed 7 Jul 2020.

  29. Nelson D, Cox M. Lehninger principles of biochemistry, 7th edn, Macmillan Learning for Instructors. 2017. https://www.macmillanlearning.com/college/us/product/Lehninger-Principles-of-Biochemistry/p/1464126119. Accessed 7 Jul 2020.

  30. Bender D, Mayes P. Chapter 19: gluconeogenesis and the control of blood glucose | Harper’s illustrated biochemistry, 31e. 2018. https://accesspharmacy-mhmedical-com.proxy.lib.pacificu.edu:2443/content.aspx?bookid=2386&sectionid=187836607. Accessed 7 Jul 2020.

  31. Fromentin C, Tomé D, Nau F, et al. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes. 2013. https://doi.org/10.2337/db12-1208.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Trabelsi K, El Abed K, Trepanowski JF, et al. Effects of ramadan fasting on biochemical and anthropometric parameters in physically active men. Asian J Sports Med. 2011. https://doi.org/10.5812/asjsm.34775.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nomani M. Dietary fat, blood cholesterol and uric acid levels during Ramadan fasting. IslamiCity. 2018. https://www.islamicity.org/6007/dietary-fat-blood-cholesterol-and-uric-acid-levels-during-ramadan-fasting/. Accessed 7 Jul 2020.

  34. Phowthongkum P, Ittiwut C, Shotelersuk V. Severe hyperammonemic encephalopathy requiring dialysis aggravated by prolonged fasting and intermittent high fat load in a ramadan fasting month in a patient with CPTII homozygous mutation. JIMD Rep. 2018. https://doi.org/10.1007/8904_2017_74.

    Article  PubMed  Google Scholar 

  35. Felig P, Marliss E, Pozefsky T, Cahill GF. Amino acid metabolism in the regulation of gluconeogenesis in man. Am J Clin Nutr. 1970. https://doi.org/10.1093/ajcn/23.7.986.

    Article  PubMed  Google Scholar 

  36. Pilegaard H, Saltin B, Neufer PD. Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes. 2003. https://doi.org/10.2337/diabetes.52.3.657.

    Article  PubMed  Google Scholar 

  37. Frier BC, Jacobs RL, Wright DC. Interactions between the consumption of a high-fat diet and fasting in the regulation of fatty acid oxidation enzyme gene expression: an evaluation of potential mechanisms. Am J Physiol Regul Integr Comp Physiol. 2011. https://doi.org/10.1152/ajpregu.00367.2010.

    Article  PubMed  Google Scholar 

  38. Tunstall RJ, Mehan KA, Hargreaves M, Spriet LL, Cameron-Smith D. Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle. Biochem Biophys Res Commun. 2002. https://doi.org/10.1016/S0006-291X(02)00473-4.

    Article  PubMed  Google Scholar 

  39. Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005. https://doi.org/10.1016/j.cmet.2005.06.002.

    Article  PubMed  Google Scholar 

  40. Liu J, Li J, Li W-J, Wang C-M. The role of uncoupling proteins in diabetes mellitus. J Diabetes Res. 2013. https://doi.org/10.1155/2013/585897.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017. https://doi.org/10.1016/j.cmet.2016.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Volek JS, Noakes T, Phinney SD. Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci. 2015. https://doi.org/10.1080/17461391.2014.959564.

    Article  PubMed  Google Scholar 

  43. De Koster J, Nelli RK, Strieder-Barboza C, de Souza J, Lock AL, Contreras GA. The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-31582-4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vernon RG, Pond CM. Adaptations of maternal adipose tissue to lactation. J Mammary Gland Biol Neoplasia. 1997;2(3):231–41.

    Article  CAS  Google Scholar 

  45. Roche JR, et al. Invited review: body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci. 2009;92:5769–801.

    Article  CAS  Google Scholar 

  46. Torchon E, Ray R, Hulver MW, McMillan RP, Voy BH. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens. Adipocyte. 2016. https://doi.org/10.1080/21623945.2016.1263777.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Josephs T, Waugh H, Kokay I, Grattan D, Thompson M. Fasting-induced adipose factor identified as a key adipokine that is up-regulated in white adipose tissue during pregnancy and lactation in the rat. J Endocrinol. 2007. https://doi.org/10.1677/JOE-07-0158.

    Article  PubMed  Google Scholar 

  48. Kirchberg FF, Brandt S, Mob A. Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0183185.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kassab S, Abdul-Ghaffar T, Nagalla DS, et al. Interactions between leptin, neuropeptide-Y and insulin with chronic diurnal fasting during Ramadan. Ann Saudi Med. 2004. https://doi.org/10.5144/0256-4947.2004.345.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khoshdel A, Kheiri S, Nasiri J, et al. The effect of Ramadan fasting on serum leptin, neuropeptide Y and insulin in pregnant women. Med J Islam Repub Iran. 2014;28:92.

    PubMed  PubMed Central  Google Scholar 

  51. Alzoghaibi MA, Pandi-Perumal SR, Sharif M, et al. Diurnal intermittent fasting during Ramadan: the effects on leptin and ghrelin levels. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0092214.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khafaji HA, Bener A, Osman M, Al-Merri A, et al. The impact of diurnal fasting during Ramadan on the lipid profile, hs-CRP, and serum leptin in stable cardiac patients. Vasc Health Risk Manag. 2012. https://doi.org/10.2147/VHRM.S22894.

    Article  PubMed  Google Scholar 

  53. Al-Rawi N, Madkour M, Jahrami H, et al. Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: a prospective observational study. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0237922.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Farmer TD, Jenkins EC, O’Brien TP, et al. Comparison of the physiological relevance of systemic vs portal insulin delivery to evaluate whole body glucose flux during an insulin clamp. Am J Physiol Endocrinol Metab. 2015. https://doi.org/10.1152/ajpendo.00406.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Masharani U, German MS. Pancreatic hormones and diabetes mellitus. In: Gardner DG, Shoback D (eds) Greenspan’s basic and clinical endocrinology. McGraw-Hill Education. 2017. https://www.accessmedicine.mhmedical.com/content.aspx?aid=1144819214 Accessed 9 July 9 2020.

  56. Reimann F, Williams L, da Silva XG, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia. 2004. https://doi.org/10.1007/s00125-004-1498-0.

    Article  PubMed  Google Scholar 

  57. Inagaki N, Seino Y, Takeda J, Yano H, Yamada Y, Bell GI, et al. Gastric inhibitory polypeptide: structure and chromosomal localization of the human gene. Mol Endocrinol. 1989;3(6):1014–21.

    Article  CAS  Google Scholar 

  58. Haghighi S, Hosseini SRA, Moghaddam MS, et al. Effects of fasting on glucagon-like peptide-1 hormone (GLP-1), and lipid profile indices in obese and thin women. Int J Pediatr. 2019. https://doi.org/10.22038/ijp.2018.36085.3147.

    Article  Google Scholar 

  59. Van Nierop FS, Meessen ECE, Nelissen KGM, et al. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am J Physiol Endocrinol Metab. 2019. https://doi.org/10.1152/ajpendo.00534.2018.

    Article  PubMed  Google Scholar 

  60. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(4):E671-678.

    Article  CAS  Google Scholar 

  61. Park B-Y, Jeon J-H, Go Y, et al. PDK4 deficiency suppresses hepatic glucagon signaling by decreasing cAMP levels. Diabetes. 2018. https://doi.org/10.2337/db17-1529.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009. https://doi.org/10.1038/nchembio.209.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xiao C, Pavlic M, Szeto L, Patterson BW, Lewis GF. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes. 2011. https://doi.org/10.2337/db10-0763.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Perry RJ, Peng L, Cline GW, Petersen KF, Shulman GI. A non-invasive method to assess hepatic acetyl-CoA in vivo. Cell Metab. 2017. https://doi.org/10.1016/j.cmet.2016.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Peng I-C, Chen Z, Sun W, et al. Glucagon regulates ACC activity in adipocytes through the CAMKKβ/AMPK pathway. Am J Physiol Endocrinol Metab. 2012. https://doi.org/10.1152/ajpendo.00504.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Galsgaard K, Pederson J, Knop F, Holst J, et al. Glucagon receptor signaling and lipid metabolism. Physiol. 2019. https://doi.org/10.3389/fphys.2019.00413.

    Article  Google Scholar 

  67. Rui L. Energy metabolism in the liver. Compr Physiol. 2014. https://doi.org/10.1002/cphy.c130024.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86(5):1423–7.

    Article  CAS  Google Scholar 

  69. Lamri-Senhadji M, Kebir B, Belleville J, Bouchenak M. Assessment of dietary consumption and time-course of changes in serum lipids and lipoproteins before, during and after Ramadan in young Algerian adults. Singap Med J. 2009;50:288–94.

    CAS  Google Scholar 

  70. Akaberi A, Golshan A, Moojdekanloo M, Hashemian M. Does fasting in Ramadan ameliorate Lipid profile? A prospective observational study. Pak J Med Sci. 2014. https://doi.org/10.12669/pjms.304.4690.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thakur S, Singh B, Mishra V, et al. Bilayer tablet based chronotherapeutics in the management of nocturnal asthma: an overview. Recent Pat Drug Deliv Formul. 2019;13(2):74–82.

    Article  Google Scholar 

  72. van Birgelen AP, van den Berg M. Toxicokinetics. Food Addit Contam. 2000;17(4):267–73.

    Article  Google Scholar 

  73. Halsas M, Hietala J, Veski P, et al. Morning versus evening dosing of ibuprofen using conventional and time-controlled release formulations. Int J Pharm. 1999;189(2):179–85.

    Article  CAS  Google Scholar 

  74. Song X, Ju Y, Zhao H, Qiu W. Effect of purple grape juice on the pharmacokinetics of digoxin: results of a food–drug interaction study. Int J Clin Pharmacol Ther. 2019;57(2):101–9.

    Article  Google Scholar 

  75. Kul S, Savaş E, Öztürk ZA. Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis. J Relig Health. 2014;53(3):929–42.

    Article  Google Scholar 

  76. Guengerich FP. Characterization of human cytochrome P450 enzymes. FASEB J. 1992;6(2):745–8.

    Article  CAS  Google Scholar 

  77. Iber H, Li-Masters T, Chen Q, Yu S, Morgan ET. Regulation of hepatic cytochrome P450 2C11 via cAMP: implications for down-regulation in diabetes, fasting, and inflammation. J Pharmacol Exp Ther. 2001;297(1):174–80.

    CAS  PubMed  Google Scholar 

  78. De Vries EM, Lammers LA, Achterbergh R, et al. Fasting-induced changes in hepatic P450 mediated drug metabolism are largely independent of the constitutive androstane receptor CAR. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0159552.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lammers LA, Achterbergh R, Romijn JA, et al. . Short-term fasting alters pharmacokinetics of cytochrome P450 probe drugs: does protein binding play a role? Eur J Drug Metab Pharmacokinet. 2018;43(2):251–7.

    Article  CAS  Google Scholar 

  80. Lammers LA, Achterbergh R, van Schaik RHN, Romijn JA, Mathôt RAA. Effect of short-term fasting on systemic cytochrome P450-mediated drug metabolism in healthy subjects: a randomized, controlled, crossover study using a cocktail approach. Clin Pharmacokinet. 2017. https://doi.org/10.1007/s40262-017-0515-7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bello AK, Kurzawa J, Osman MA, et al. Impact of Ramadan fasting on kidney function and related outcomes in patients with chronic kidney disease: a systematic review protocol. BMJ Open. 2019;9(8):e022710.

    Article  Google Scholar 

  82. Hendawy A. Effect of Ramadan fasting on renal physiology. Urology & Nephrology Open Access Journal. 2014;1(3):74–7.

    Article  Google Scholar 

  83. Hassan S, Hassan F, Abbas N, et al. Does Ramadan fasting affect hydration status and kidney function in CKD patients? Ann Nutr Metab. 2018;72(3):241–7.

    Article  CAS  Google Scholar 

  84. Abdlekawy KS, Donia AM, Elbarbry F. Effects of grapefruit and pomegranate juices on the pharmacokinetic properties of Dapoxetine and Midazolam in healthy subjects. Eur J Drug Metab Pharmacokinet. 2017;42(3):397–405.

    Article  CAS  Google Scholar 

  85. Tan CSS, Lee SWH. Warfarin and food, herbal and dietary supplement interactions. Br J Clin Pharmacol. 2020. https://doi.org/10.1111/bcp.14404.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Karimi.

Ethics declarations

Conflicts of interest

All authors declare no conflict of interest.

Research involving Human Participants and/or Animals

Not applicable

Informed consent

Not applicable

Funding

No funding was received for the conduct of this review.

Ethical Approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, R., Cleven, A., Elbarbry, F. et al. The Impact of Fasting on Major Metabolic Pathways of Macronutrients and Pharmacokinetics Steps of Drugs . Eur J Drug Metab Pharmacokinet 46, 25–39 (2021). https://doi.org/10.1007/s13318-020-00656-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00656-y

Navigation