Skip to main content
Log in

Differences in Intestinal Metabolism of Ginseng Between Normal and Immunosuppressed Rats

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Ginseng is usually consumed as a dietary supplement for health care in the normal state or prescribed as a herbal medicine in pathologic conditions. Although metabolic studies of ginseng are commonly performed on healthy organisms, the metabolic characteristics in pathologic organisms remain unexplored. This study aimed to uncover the difference in intestinal metabolism of ginseng between normal and cyclophosphamide-induced immunosuppressed rats and further discuss the potential mechanisms involved.

Methods

Twelve Sprague-Dawley rats (6–8 weeks old) were randomly divided into two groups: the normal group (NG) and immunosuppressed group (ISG). Rats in the NG and ISG groups were intraperitoneally administered normal saline and cyclophosphamide injections (40 mg/kg) on the 1st, 2nd, 3rd and 10th days; on the 12th day, all rats were intragastrically administered ginseng water extract (900 mg/kg). The difference in intestinal metabolism of ginseng was compared using an ultra-high-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry-based metabolomics approach, and the diversities of gut microbiota were analyzed by 16S rRNA gene sequencing between the two groups.

Results

The intestinal metabolomic characteristics of ginseng were significantly different between the normal and immunosuppressed rats, with the ginsenoside F2 (F2), 20S-ginsenoside Rg3 (20(S)-Rg3), pseudo-ginsenoside Rt5 (Pseudo-Rt5), ginsenoside Rd (Rd), ginsenoside Rh1 (Rh1), 20S-ginsenoside Rg1 (20(S)-Rg1), ginsenoside compound K (CK), ginsenoside Rg2 (Rg2) and 20S-panaxatriol (S-PPT) more abundant in immunosuppressed ones (P < 0.05). Additionally, the composition of gut microbiota was remarkably altered in the two groups, with some specific bacterial communities such as Bacteroides spp., Eubacterium spp. and Lachnospiraceae_UCG-010 spp. increased and Bifidobacterium spp. decreased in immunosuppressed rats compared with normal ones.

Conclusion

The intestinal metabolism of ginseng in immunosuppressed rats was significantly different from that in normal ones, which might be partly attributed to the changes in the intensity of specific gut bacteria. The outcomes of this study could provide scientific data for rationalization of ginseng use as both a dietary supplement and herbal medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu H, Long MH, Wu J, Wang MM, Li XY, Shen H, Xu JD, Zhou L, Fang ZJ, Luo Y, Li SL. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid. Sci Rep. 2015;5:17536.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Block KI, Mead MN. Immune system effects of echinacea, ginseng, and astragalus: a review. Integr Cancer Ther. 2003;2:247–67.

    PubMed  Google Scholar 

  3. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep. 2011;28:467–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma B, Kan WL, Zhu H, Li SL, Lin G. Sulfur fumigation reducing systemic exposure of ginsenosides and weakening immunomodulatory activity of ginseng. J Ethnopharmacol. 2017;195:222–30.

    CAS  PubMed  Google Scholar 

  5. Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther. 2015;9:23–322.

    CAS  PubMed  Google Scholar 

  6. Kim JH, Doo EH, Jeong M, Kim S, Lee YY, Yang J, Lee JS, Kim JH, Lee KW, Huh CS, Byun S. Enhancing immunomodulatory function of red ginseng through fermentation using Bifidobacterium animalis Subsp. lactis LT 19–2. Nutrients. 2019;11:1481.

    CAS  PubMed Central  Google Scholar 

  7. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol. 1998;50:1155–60.

    CAS  PubMed  Google Scholar 

  8. Lee J, Lee E, Kim D, Lee J, Yoo J, Koh B. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol. 2009;122:143–8.

    CAS  PubMed  Google Scholar 

  9. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos. 2003;31:1065–71.

    PubMed  Google Scholar 

  10. Zhu H, Shen H, Xu J, Xu JD, Zhu LY, Wu J, Chen HB, Li SL. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach. Drug Test Anal. 2015;7:320–30.

    CAS  PubMed  Google Scholar 

  11. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.

    CAS  PubMed  Google Scholar 

  12. Li SL, Song JZ, Qiao CF, Zhou Y, Qian K, Lee KH, Xu HX. A novel strategy to rapidly explore potential chemical markers for the discrimination between raw and processed Radix Rehmanniae by UHPLC-TOFMS with multivariate statistical analysis. J Pharm Biomed Anal. 2010;51:812–23.

    CAS  PubMed  Google Scholar 

  13. Kong M, Liu HH, Wu J, Shen MQ, Wang ZG, Duan SM, Zhang YB, Zhu H, Li SL. Effects of sulfur-fumigation on the pharmacokinetics, metabolites and analgesic activity of Radix Paeoniae Alba. J Ethnopharmacol. 2018;212:95–105.

    CAS  PubMed  Google Scholar 

  14. Ju F, Zhang T. 16S rRNA gene high-throughput sequencing data mining of microbial diversity and interactions. Appl Microbiol Biotechnol. 2015;99:4119–29.

    CAS  PubMed  Google Scholar 

  15. Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, Forslund SK, Assmann K, Valles-Colomer M, Nguyen TTD, Proost S, Prifti E, Tremaroli V, Pons N, Le Chatelier E, Andreelli F, Bastard JP, Coelho LP, Galleron N, Hansen TH, Hulot JS, Lewinter C, Pedersen HK, Quinquis B, Rouault C, Roume H, Salem JE, Søndertoft NB, Touch S, Dumas ME, Ehrlich SD, Galan P, Gøtze JP, Hansen T, Holst JJ, Køber L, Letunic I, Nielsen J, Oppert JM, Stumvoll M, Vestergaard H, Zucker JD, Bork P, Pedersen O, Bäckhed F, Clément K, Raes J. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature. 2020;581:310–5.

    CAS  PubMed  Google Scholar 

  16. Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, Kleimeyer C, Moresi C, Harnik Y, Zur M, Zabari M, Brik RB, Kviatcovsky D, Zmora N, Cohen Y, Bar N, Levi I, Amar N, Mehlman T, Brandis A, Biton I, Kuperman Y, Tsoory M, Alfahel L, Harmelin A, Schwartz M, Israelson A, Arike L, Johansson MEV, Hansson GC, Gotkine M, Segal E, Elinav E. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572:474–80.

    CAS  PubMed  Google Scholar 

  17. Zhou SS, Xu JD, Zhu H, Shen H, Xu J, Mao Q, Li SL, Yan R. Simultaneous determination of original, degraded ginsenosides and aglycones by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for quantitative evaluation of Du-Shen-Tang, the decoction of ginseng. Molecules. 2014;19:4083–104.

    PubMed  PubMed Central  Google Scholar 

  18. Li SL, Lai SF, Song JZ, Qiao CF, Liu X, Zhou Y, Cai H, Cai BC, Xu HX. Decocting-induced chemical transformations and global quality of Du–Shen–Tang, the decoction of ginseng evaluated by UPLC-Q-TOF–MS/MS based chemical profiling approach. J Pharm Biomed Anal. 2010;53:946–57.

    CAS  PubMed  Google Scholar 

  19. García-Villalba R, Selma MV, Espín JC, Tomás-Barberán FA. Identification of novel urolithin metabolites in human feces and urine after the intake of a pomegranate extract. J Agric Food Chem. 2019;67:11099–107.

    PubMed  Google Scholar 

  20. Zhou G, Zhang Y, Li Y, Wang M, Li X. The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1079:25–33.

    CAS  PubMed  Google Scholar 

  21. Gan L, Ji J, Wang L, Li QY, Zhang CF, Wang CZ, Yuan CS. Identification of the metabolites in normal and AA rat plasma, urine and feces after oral administration of Daphne genkwa flavonoids by LC–Q-TOF–MS spectrometry. J Pharm Biomed Anal. 2020;177:112856.

    CAS  PubMed  Google Scholar 

  22. Shin MS, Song JH, Choi P, Lee JH, Kim SY, Shin KS, Ham J, Kang KS. Stimulation of innate immune function by Panax ginseng after heat processing. J Agric Food Chem. 2018;66:4652–9.

    CAS  PubMed  Google Scholar 

  23. Liu X, Zhang Z, Liu J, Wang Y, Zhou Q, Wang S, Wang X. Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice. Int Immunopharmacol. 2019;72:98–111.

    CAS  PubMed  Google Scholar 

  24. Wang R, Zhang M, Hu S, Liu K, Tai Y, Tao J, Zhou W, Zhao Z, Wang Q, Wei W. Ginsenoside metabolite compound-K regulates macrophage function through inhibition of β-arrestin2. Biomed Pharmacother. 2019;115:108909.

    CAS  PubMed  Google Scholar 

  25. Shen H, Zhang L, Xu J-D, Ding Y-F, Zhou J, Wu J, Zhang W, Mao Q, Liu L-F, Zhu H, Li S-L. Effect of sulfur-fumigation process on ginseng: metabolism and absorption evidences. J Ethnopharmacol. 2020;256:112799.

    CAS  PubMed  Google Scholar 

  26. Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res. 2018;42:255–63.

    PubMed  Google Scholar 

  27. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75–84.

    CAS  PubMed  Google Scholar 

  28. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69:1510–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32.

    CAS  PubMed  Google Scholar 

  30. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.

    CAS  PubMed  Google Scholar 

  31. Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Curr Opin Immunol. 2014;26:41–8.

    CAS  PubMed  Google Scholar 

  32. Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ Toxicol Pharmacol. 2015;39:1262–75.

    CAS  PubMed  Google Scholar 

  33. Xu X, Zhang X. Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol Res. 2015;171:97–106.

    CAS  PubMed  Google Scholar 

  34. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14:356–65.

    CAS  PubMed  Google Scholar 

  35. Ying M, Yu Q, Zheng B, Wang H, Wang J, Chen S, Nie S, Xie M. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym. 2020;235:115957.

    CAS  PubMed  Google Scholar 

  36. Sun Y, Liu Y, Ai C, Song S, Chen X. Caulerpa lentillifera polysaccharides enhance the immunostimulatory activity in immunosuppressed mice in correlation with modulating gut microbiota. Food Funct. 2019;10:4315–29.

    CAS  PubMed  Google Scholar 

  37. Rajakovich LJ, Balskus EP. Metabolic functions of the human gut microbiota: the role of metalloenzymes. Nat Prod Rep. 2019;36:593–625.

    CAS  PubMed  Google Scholar 

  38. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull. 2000;23:1481–5.

    CAS  PubMed  Google Scholar 

  39. Yang L, Zou H, Gao Y, Luo J, Xie X, Meng W, Zhou H, Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev. 2020;52:125–38.

    CAS  PubMed  Google Scholar 

  40. Kim K-A, Jung I-H, Park S-H, Ahn Y-T, Huh C-S, Kim D-H. Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS One. 2013;8:e62409.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Zhu or Song-Lin Li.

Ethics declarations

Funding

This study was funded by the National Key R&D Program of China (2019YFC1711000), National Natural Science Foundation of China (81873094 and 81503365), Independent Research Projects of Jiangsu Province Academy of Traditional Chinese Medicine (BM2018024-2019001 and BM2018024-2019009) and Natural Science Foundation of Jiangsu Province, China (BK20191504).

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This study was approved by the Animal Ethics Committee of Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China.

Author contributions

JHZ designed the study, performed the experiment, analyzed the results and drafted the manuscript; JDX, SSZ, XYZ, JZ, MK and QM performed the experiment partly; HZ and SLL acquired the funds, designed the study, analyzed the results and revised the manuscript.

Consent to participate

Not applicable.

Consent for publication

All authors approve the publication of this study.

Code availability

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JH., Xu, JD., Zhou, SS. et al. Differences in Intestinal Metabolism of Ginseng Between Normal and Immunosuppressed Rats. Eur J Drug Metab Pharmacokinet 46, 93–104 (2021). https://doi.org/10.1007/s13318-020-00645-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00645-1

Navigation