Prediction of the Oral Bioavailability Correlation Between Humans and Preclinical Animals

Abstract

Background

Experimental determination of a drug's oral bioavailability in humans is cost and time consuming; therefore, is usually performed on preclinical animals. It is believed that animal data are predictive of human data; however, there are some doubts regarding the reliability of this concept. The aim of this study is to clarify whether it is possible to predict a correlation between human and animal bioavailability data based on structural parameters.

Methods

Oral bioavailability data of drugs for humans and preclinical animals (rats and dogs) were collected from the literature. Structural descriptors [Abraham solvation parameters, topological polar surface area (TPSA), logarithm of partition coefficient (logP) and logarithm of distribution coefficient at pH = 6.8 (logD6.8)] were calculated by ACD/Labs software. Data were divided into two classes by percentage deviation (PD) of oral bioavailability between humans and preclinical animals (PD < 40%: class I and PD > 40%: class II). Classification-based models were used to predict the class of each drug using structural parameters.

Results

The results of this study revealed that logD6.8 is the main parameter for evaluation of the correlation between oral bioavailability in humans and animals. Moreover, the developed models using logistic regression based on logP, TPSA and Abraham solvation parameters are able to predict the class of a drug with 75% accuracy.

Conclusion

The structural parameters and developed models in this study can be used to find compounds that have an acceptable correlation between oral bioavailabilities in animals, i.e., rats and dogs, and humans.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Musther H, Olivares-Morales A, Hatley OJD, Liu B, Rostami HA. Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci. 2014;57(1):280–91. https://doi.org/10.1016/j.ejps.2013.08.018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kim MT, Sedykh A, Chakravarti SK, Saiakhov RD, Zhu H. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm Res. 2014;31(4):1002–144. https://doi.org/10.1007/s11095-013-1222-1.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2(3):192–204. https://doi.org/10.1038/nrd1032.

    Article  PubMed  Google Scholar 

  4. 4.

    Hou T, Li Y, Zhang W, Wang J. Recent developments of in silico predictions of intestinal absorption and oral bioavailability. Comb Chem High Throughput Screen. 2009;12(5):497–506. https://doi.org/10.2174/138620709788489082.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bigoniya P, Mishra S. Pharmacokinetic interaction of salbutamol co-administered with vasicine isolated from Adhathoda vasica on rabbit. Pharm Sci. 2018;24(2):83–8. https://doi.org/10.15171/PS.2018.13.

    Article  Google Scholar 

  6. 6.

    Aungst BJ. Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J Pharm Sci. 2017;106(4):921–9. https://doi.org/10.1016/j.xphs.2016.12.002.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hao T, Ling Y, Wu M, Shen Y, Gao Y, Liang S, et al. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: In situ and in vivo evidences. Eur J Pharm Sci. 2017;101:71–9. https://doi.org/10.1016/j.ejps.2017.02.009.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Cabrera-Pérez MÁ, Pham-The H. Computational modeling of human oral bioavailability: what will be next? Expert Opin Drug Discov. 2018;13(6):509–21. https://doi.org/10.1080/17460441.2018.1463988.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92. https://doi.org/10.1016/j.vascn.2014.12.005.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94. https://doi.org/10.1517/17425255.2.6.875.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Henze LJ, Koehl NJ, O'Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. J Pharm Pharmacol. 2019;71(4):581–602. https://doi.org/10.1111/jphp.12912.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86. https://doi.org/10.1007/s11095-006-9041-2.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Mahmood I. Can absolute oral bioavailability in humans be predicted from animals? A comparison of allometry and different indirect methods. Drug Metab Drug Interact. 2000;16(2):143–55. https://doi.org/10.1515/DMDI.2000.16.2.143.

    CAS  Article  Google Scholar 

  14. 14.

    Ward KW, Nagilla R, Jolivette LJ. Comparative evaluation of oral systemic exposure of 56 xenobiotics in rat, dog, monkey and human. Xenobiotica. 2005;35(2):191–21010. https://doi.org/10.1080/00498250400028197.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Bansal S, DeStefano A. Key elements of bioanalytical method validation for small molecules. AAPS J. 2007. https://doi.org/10.1208/aapsj0901011.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Olivares-Morales A, Hatley OJD, Turner D, Galetin A, Aarons L, Rostami-Hodjegan A. The use of ROC analysis for the qualitative prediction of human oral bioavailability from animal data. Pharm Res. 2014;31(3):720–30. https://doi.org/10.1007/s11095-013-1193-2.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Rácz A, Bajusz D, Héberger K. Modelling methods and cross-validation variants in QSAR: a multi-level analysis$. SAR QSAR Environ Res. 2018;29(9):661–74. https://doi.org/10.1080/1062936X.2018.1505778.

    Article  PubMed  Google Scholar 

  18. 18.

    Jansen K, Pou Casellas C, Groenink L, Wever KE, Masereeuw R. Humans are animals, but are animals human enough? A systematic review and meta-analysis on interspecies differences in renal drug clearance. Drug Discov Today. 2020. https://doi.org/10.1016/j.drudis.2020.01.018.

    Article  PubMed  Google Scholar 

  19. 19.

    Bergström CAS, Larsson P. Computational prediction of drug solubility in water-based systems: qualitative and quantitative approaches used in the current drug discovery and development setting. Int J Pharm. 2018;540(1–2):185–93. https://doi.org/10.1016/j.ijpharm.2018.01.044.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Van de Waterbeemd H, Testa B. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. New York: Wiley; 2009.

    Google Scholar 

  21. 21.

    Hasselstrom J, Eriksson S, Persson A, Rane A, Svensson J, Sawe J. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol. 1990;29(3):289–97. https://doi.org/10.1111/j.1365-2125.1990.tb03638.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53. https://doi.org/10.1016/j.apsb.2015.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chen C-H. Metabolic conversion of lipophilic compounds. Activation and detoxification enzymes. Berlin: Springer; 2012. p. 17–24.

    Google Scholar 

  24. 24.

    Golfar Y, Shayanfar A. Prediction of biopharmaceutical drug disposition classification system (BDDCS) by structural parameters. J Pharm Pharm Sci. 2019;22(1):247–69. https://doi.org/10.18433/jpps30271.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Newby D, Freitas AA, Ghafourian T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur J Med Chem. 2015;90:751–65. https://doi.org/10.1016/j.ejmech.2014.12.006.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019. https://doi.org/10.3390/pharmaceutics11080411.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fagerholm U, Nilsson D, Knutson L, Lennernäs H. Jejunal permeability in humans in vivo and rats in situ: Investigation of molecular size selectivity and solvent drag. Acta Physiol Scand. 1999;165(3):315–24. https://doi.org/10.1046/j.1365-201X.1999.00510.x.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Prasanna S, Doerksen RJ. Topological polar surface area: a useful descriptor in 2D-QSAR. Curr Med Chem. 2009;16(1):21–41. https://doi.org/10.2174/092986709787002817.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Acree WE, Jr., Grubbs LM, Abraham MH. Prediction of partition coefficients and permeability of drug molecules in biological systems with Abraham model solute descriptors derived from measured solubilities and water-to-organic solvent partition coefficients. In: Acree WE, Jr., editor. Toxicity and Drug Testing. 2012. p. 91–128.

  30. 30.

    Abraham MH. Human intestinal absorption—neutral molecules and ionic species. J Pharm Sci. 2014;103(7):1956–66. https://doi.org/10.1002/jps.24024.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Mohammadi SM, Shayanfar A, Emami S, Jouyban A. Effects of amount of excess solid, the type of stirring and sedimentation time on solubility of sodium phenytoin and lamotrigine. ADMET DMPK. 2018;6(4):269–78. https://doi.org/10.5599/admet.621.

    Article  Google Scholar 

  32. 32.

    Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(SUPPL. 1):S41–S67. https://doi.org/10.1016/S0169-409X(01)00179-X.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Abuhelwa AY, Williams DB, Upton RN, Foster DJR. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm. 2017;112:234–48. https://doi.org/10.1016/j.ejpb.2016.11.034.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hosey CM, Chan R, Benet LZ. BDDCS predictions, self-Correcting aspects of BDDCS assignments, BDDCS assignment corrections, and classification for more than 175 additional drugs. AAPS J. 2016;18(1):251–60.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This article is a part of the results of S.B's Pharm.D thesis (project number: 61772) registered at Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Shayanfar.

Ethics declarations

Funding

No funding was received for the conduct of this study.

Conflict of interest

All the authors have no conflict of interest to declare.

Ethics approval

The study was approved by ethics committees of Tabriz University of Medical Sciences (IR.TBZMED.VCR.REC.1398.259).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beheshti, S., Shayanfar, A. Prediction of the Oral Bioavailability Correlation Between Humans and Preclinical Animals. Eur J Drug Metab Pharmacokinet (2020). https://doi.org/10.1007/s13318-020-00636-2

Download citation