Skip to main content
Log in

A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Multidrug-resistant tuberculosis (MDR-TB) is becoming a global health crisis. The World Health Organization has released new guidelines for the use of tuberculosis-active drugs for the treatment of patients with MDR-TB. Despite documented activity against tuberculosis isolates, doses and exposure targets are yet to be optimized. Our objective was therefore to review the clinical pharmacokinetic and pharmacodynamic literature pertaining to drugs recommended to treat MDR-TB and to identify target areas for future research. To date, published research is limited but studies were identified that evaluated the pharmacokinetics and pharmacodynamics of these drugs. Exposure targets were assessed and summarized for each drug. Exposure-based targets (e.g., area under the concentration curve/minimum inhibitory concentration) appear to be most commonly associated with predicting drug efficacy. Dose variation studies based on these targets were largely inconclusive. Future research should focus on determining the risks and benefits of dose optimization to meet exposure targets and improve patient outcomes. The role of therapeutic drug monitoring also remains yet to be confirmed, both from a clinical perspective as well as a resource allocation perspective in regions where MDR-TB is active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Tuberculosis. 2018. https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis. Accessed 5 Dec 2019.

  2. Furin J, Cox H. Tuberculosis. Lancet. 2019;393:1642–56.

    PubMed  Google Scholar 

  3. Gunther G. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges. Clin Med. 2014;14:279–85.

    Google Scholar 

  4. Dean AS, Cox H, Zignol M. Epidemiology of drug-resistant tuberculosis. Adv Exp Med Biol. 2017;1019:209–20.

    CAS  PubMed  Google Scholar 

  5. World Health Organization. UN general assembly high level meeting on ending TB. 2018. https://www.who.int/news-room/events/un-general-assembly-high-level-meeting-on-ending-tb. Accessed 5 Dec 2019.

  6. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.

  7. Rizk ML, Bhavnani SM, Drusano G, Dane A, Eakin AE, Guina T, et al. Considerations for dose selection and clinical pharmacokinetics/pharmacodynamics for the development of antibacterial agents. Antimicrob Agents Chemother. 2019;63:e02309–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Technical report on the pharmacokinetics and pharmacodynamics (PK/PD) of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization; 2018 (WHO/CDS/TB/2018.6). Licence: CC BY-NC-SA 3.0 IGO.

  9. Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204:1951–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mariandyshev A, Eliseev P. Drug-resistant tuberculosis threatens WHO’s End-TB strategy. Lancet Infect Dis. 2017;17:674–5.

    PubMed  Google Scholar 

  11. Alffenaar JC, Migliori GB, Gumbo T. Multidrug-resistant tuberculosis: pharmacokinetic and pharmacodynamic science. Lancet Infect Dis. 2017;17:898.

    PubMed  Google Scholar 

  12. Reynolds J, Heysell SK. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin Drug Metab Toxicol. 2014;10:813–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Peloquin CA, Phillips PPJ, Mitnick CD, Eisenach K, Patientia RF, Lecca L, et al. Increased doses lead to higher drug exposures of levofloxacin for treatment of tuberculosis. Antimicrob Agents Chemother. 2018;62:e00770-18.

    PubMed  PubMed Central  Google Scholar 

  14. Peloquin CA, Hadad DJ, Molino LPD, Palaci M, Boom WH, Dietze R, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52:852–7.

    CAS  PubMed  Google Scholar 

  15. Ghimire S, Maharjan B, Jongedijk EM, Kosterink JGW, Ghimire GR, Touw DJ, et al. Levofloxacin pharmacokinetics and pharmacodynamics and outcome in MDR-TB patients. Eur Respir J. 2019;53:1802107.

    PubMed  Google Scholar 

  16. Thee S, Garcia-Prats AJ, Draper HR, McIlleron HM, Wiesner L, Castel S, et al. Pharmacokinetics and safety of moxifloxacin in children with multidrug-resistant tuberculosis. Clin Infect Dis. 2015;60:549–56.

    CAS  PubMed  Google Scholar 

  17. Mpagama SG, Ndusilo N, Stroup S, Kumburu H, Peloquin CA, Gratz J, et al. Plasma drug activity in patients on treatment for multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2014;58:782–8.

    PubMed  PubMed Central  Google Scholar 

  18. van’t Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, van der Laan T, Kosterink JGW, van der Werf TS, et al. Pharmacokinetics of levofloxacin in multidrug- and extensively drug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2017;61:e00343-17.

    Google Scholar 

  19. Denti P, Garcia-Prats AJ, Draper HR, Wiesner L, Winckler J, Thee S, et al. Levofloxacin population pharmacokinetics in South African children treated for multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2018;62:e01521-17.

    PubMed  PubMed Central  Google Scholar 

  20. Malik AA, Brooks MB, Siddiqui S, Fuad J, Peloquin CA, Amanullah F, et al. Pharmacokinetics of levofloxacin in children treated for exposure to drug-resistant tuberculosis. Antimicrob Agents Chemother. 2019;63(5):e02569-18.

    PubMed  PubMed Central  Google Scholar 

  21. Ghimire S, van’t Boveneind-Vrubleuskaya N, Akkerman OW, de Lange WCM, van Soolingen D, Kosterink JGW, et al. Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB. J Antimicrob Chemother. 2016;71:2691–703.

    PubMed  Google Scholar 

  22. Deshpande D, Pasipanodya JG, Mpagama SG, Bendet P, Srivastava S, Koeuth T, et al. Levofloxacin pharmacokinetics/pharmacodynamics, dosing, susceptibility breakpoints, and artificial intelligence in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis. 2018;67:S293–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mase SR, Jereb JA, Gonzalez D, Martin F, Daley CL, Fred D, et al. Pharmacokinetics and dosing of levofloxacin in children treated for active or latent multidrug-resistant tuberculosis, Federated States of Micronesia and Republic of the Marshall Islands. Pediatr Infect Dis J. 2016;35(4):414–21.

    PubMed  PubMed Central  Google Scholar 

  24. Kumar AKH, Kumar A, Kannan T, Bhatia R, Agarwal D, Kumar S, et al. Pharmacokinetics of second-line antituberculosis drugs in children with multidrug-resistant tuberculosis in India. Antimicrob Agents Chemother. 2018;62(5):e02410–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Prats AJ, Purchase SE, Osman M, Draper HR, Schaaf HS, Wiesner L, et al. Pharmacokinetics, safety, and dosing of novel pediatric levofloxacin dispersible tablets in children with multidrug-resistant tuberculosis exposure. Antimicrob Agents Chemother. 2019;63(4):e01865-18.

    PubMed  PubMed Central  Google Scholar 

  26. Chang MJ, Jin B, Chae J, Yun H, Kim ES, Lee YJ, et al. Population pharmacokinetics of moxifloxacin, cycloserine, p-aminosalicylic acid and kanamycin for the treatment of multi-drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:677–87.

    CAS  PubMed  Google Scholar 

  27. Ganatra SR, Udwadia ZF, Mullerpattan JB, Banka RA, Gandhare AR, Sadani MA, Rodrigues CS. High dose moxifloxacin for drug resistant tuberculosis; is 600 mg the optimal dose in high resistance settings? Am J Resp Crit Care Med. 2016;193:A4570.

    Google Scholar 

  28. Gumbo T, Louie A, Deziel MR, Parsons LM, Salfinger M, Drusano GL. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190:1642–51.

    CAS  PubMed  Google Scholar 

  29. Zvada SP, Denti P, Sirgel FA, Chigutsa E, Hatherill M, Charalambous S, et al. Moxifloxacin population pharmacokinetics and model-based comparison of efficacy between moxifloxacin and ofloxacin in African patients. Antimicrob Agents Chemother. 2014;58:503–10.

    PubMed  PubMed Central  Google Scholar 

  30. Heinrichs MT, Vashakidze S, Nikolaishvili K, Sabulua I, Tukvadze N, Bablishvili N, et al. Moxifloxacin target site concentrations in patients with pulmonary TB utilizing microdialysis: a clinical pharmacokinetic study. J Antimicrob Chemother. 2018;73(2):477–83.

    PubMed  Google Scholar 

  31. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R, et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother. 2012;56:3271–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother. 2014;69:2310–8.

    PubMed  Google Scholar 

  33. Akkerman OW, Odish OF, Bolhuis MS, de Lange WC, Kremer HP, Luijckx GJ, et al. Pharmacokinetics of bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin Infect Dis. 2016;62(4):523–4.

    PubMed  Google Scholar 

  34. Svensson EM, Dosne AG, Karlsson MO. Population pharmacokinetics of bedaquiline and metabolite M2 in patients with drug-resistant tuberculosis: the effect of time-varying weight and albumin. CPT Pharmacometrics Syst Pharmacol. 2016;5(12):682–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McLeay SC, Vis P, van Heeswijk RPG, Green B. Population pharmacokinetics of bedaquiline (TMC207), a novel antituberculosis drug. Antimicrob Agents Chemother. 2014;58:5315–24.

    PubMed  PubMed Central  Google Scholar 

  36. Perrineau S, Lachâtre M, Lê MP, Rioux C, Loubet P, Fréchet-Jachym M, et al. Long-term plasma pharmacokinetics of bedaquiline for multidrug- and extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2019;23(1):99–104.

    CAS  PubMed  Google Scholar 

  37. Svensson EM, Karlsson MO. Modelling of mycobacterial load reveals bedaquiline’s exposure-response relationship in patients with drug-resistant TB. J Antimicrob Chemother. 2017;72:3398–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rouan M, Lounis N, Gevers T, Dillen L, Gilissen R, Raoof A, Andries K. Pharmacokinetics and pharmacodynamics of TMC207 and its N-desmethyl metabolite in a murine model of tuberculosis. Antimicrob Agents Chemother. 2012;56:1444–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Doan TN, Cao P, Emeto TI, McCaw JM, McBryde ES. Predicting the outcomes of new short-course regimens for multidrug-resistant tuberculosis using intrahost and pharmacokinetic-pharmacodynamic modeling. Antimicrob Agents Chemother. 2018;62(12):e01487-18.

    PubMed  PubMed Central  Google Scholar 

  40. Tsuyuguchi K, Sasaki Y, Mitarai S, Kurosawa K, Saito Y, Koh T, et al. Safety, efficacy, and pharmacokinetics of bedaquiline in Japanese patients with pulmonary multidrug-resistant tuberculosis: an interim analysis of an open-label, phase 2 study. Respir Investig. 2019;57(4):345–53.

    PubMed  Google Scholar 

  41. Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Exp Rev Anti Infect Ther. 2016;14:901–15.

    CAS  Google Scholar 

  42. Garcia-Prats AJ, Schaaf HS, Draper HS, Garcia-Cremades M, Winckler J, Wiesner L, et al. Pharmacokinetics, optimal dosing, and safety of linezolid in children with multidrug-resistant tuberculosis: combined data from two prospective observational studies. PLoS Med. 2019;16(4):e1002789.

    PubMed  PubMed Central  Google Scholar 

  43. Song T, Lee M, Jeon HS, Park Y, Dodd LE, Dartois V, et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine. 2015;2(11):1627–33.

    PubMed  PubMed Central  Google Scholar 

  44. Srivastava S, Magombedze G, Koeuth T, Sherman C, Pasipanodya JG, Raj P, et al. Linezolid dose that maximizes sterilizing effect while minimizing toxicity and resistance emergence for tuberculosis. Antimicrob Agents Chemother. 2017;61:e00751-17.

    PubMed  PubMed Central  Google Scholar 

  45. Bolhuis MS, Akkerman OW, Sturkenboom MGG, Ghimire S, Srivastava S, Gumbo T, Alffenaar JC. Linezolid-based regimens for multidrug-resistant tuberculosis (TB): a systematic review to establish or revise the current recommended dose for TB treatment. Clin Infect Dis. 2018;67:S327–35.

    CAS  PubMed  Google Scholar 

  46. Brown AN, Drusano GL, Adams JR, Rodriquez JL, Jambunathan K, Baluya DL, et al. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. mBio. 2015;6:e01741-15.

    PubMed  PubMed Central  Google Scholar 

  47. Alffenaar JC, van Altena R, Harmelink IM, Filguera P, Molenaar E, Wessels AMA, et al. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistance and extensively drug-resistant tuberculosis patients. Clin Pharmacokinet. 2010;49:559–65.

    CAS  PubMed  Google Scholar 

  48. Millard J, Pertinez H, Bonnett L, Hodel EM, Dartois V, Johnson JL, et al. Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. J Antimicrob Chemother. 2018;73:1755–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kempker RR, Heinrichs MT, Nikolaishvili K, Sabulua I, Bablishvili N, Gogishvili S. A comparison of linezolid lung tissue concentrations among patients with drug-resistant tuberculosis. Eur Respir J. 2018;51(2):1702166.

    PubMed  PubMed Central  Google Scholar 

  50. Gopal M, Padayatchi N, Metcalfe JZ, O’Donnell MR. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2013;17:1001–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Court R, Wiesner L, Stewart A, de Vries N, Harding J, Maartens G, et al. Steady state pharmacokinetics of cycloserine in patients on terizidone for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2018;22(1):30–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Deshpande D, Alffenaar JC, Koser CU, Dheda K, Chapagain ML, Simbar N, et al. D-Cycloserine pharmacokinetics/pharmacodynamics, susceptibility, and dosing implications in multidrug-resistant tuberculosis: a Faustian deal. Clin Infect Dis. 2018;67:S308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mulubwa M, Mugabo P. Analysis of terizidone in plasma using HPLC-UV method and its application in a pharmacokinetic study of patients with drug-resistant tuberculosis. Biomed Chromatogr. 2018;32:e4325.

    PubMed  Google Scholar 

  54. Stinson K, Kurepina N, Venter A, Fujiwara M, Kawasaki M, Timm J, et al. MIC of delamanid (OPC-67683) against Mycobacterium tuberculosis clinical isolates and a proposed critical concentration. Antimicrob Agents Chemother. 2016;60:3316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–60.

    CAS  PubMed  Google Scholar 

  56. Sturkenboom MGG, Simbar N, Akkerman OW, Ghimire S, Bolhuis MS, Alffenaar JC. Amikacin dosing for MDR tuberculosis: a systematic review to establish or revise the current recommended dose for tuberculosis treatment. Clin Infect Dis. 2018;67:S303–7.

    CAS  PubMed  Google Scholar 

  57. Modongo C, Pasipanodya JG, Magazi BT, Srivastava S, Zetola NM, Williams SM, et al. Artificial intelligence and amikacin exposures predictive of outcomes in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2016;60:5928–32.

    PubMed  PubMed Central  Google Scholar 

  58. Srivastava S, Modongo C, Siyambalapitiyage Dona CW, Pasipanodya JG, Deshpande D, Gumbo T. Amikacin optimal exposure targets in the hollow-fiber system model of tuberculosis. Antimicrob Agents Chemother. 2016;60:5922–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Modongo C, Pasipanodya JG, Zetola NM, Williams SM, Sirugo G, Gumbo T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2015;59(10):6337–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ahmad N, Ajuha SD, Akkerman OW, Alffenaar JC, Anderson LF, Baghaei P, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392:821–34.

    PubMed  PubMed Central  Google Scholar 

  61. Sotgiu G, D’Ambrosio L, Centis R, Tiberi S, Esposito S, Dore S, et al. Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2016;17:373.

    PubMed  PubMed Central  Google Scholar 

  62. van Rijn SP, Zuur MA, Anthony R, Willfert B, van Altena R, Akkerman OW, et al. Evaluation of cabapenems for treatment of multi- and extensively drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63:e01489-18.

    PubMed  PubMed Central  Google Scholar 

  63. van Rijn SP, van Altena R, Akkerman OW, van Soolingen D, van der Laan T, de Lange WCM. Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis. Eur Respir J. 2016;47:1229–34.

    PubMed  Google Scholar 

  64. Chirehwa MT, McIlleron H, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, Denti P. Pharmacokinetics of pyrazinamide and optimal dosing regimens for drug-sensitive and -resistant tuberculosis. Antimicob Agents Chemother. 2017;61:e00490-17.

    Google Scholar 

  65. Mugabo P, Mulubwa M. Population pharmacokinetic modelling of pyrazinamide and pyrazinoic acid in patients with multi-drug resistant tuberculosis. Eur J Drug Metab Pharmacokinet. 2019;44(4):519–30.

    CAS  PubMed  Google Scholar 

  66. Sy SK, de Kock L, Diacon AH, Werely CJ, Xia H, Rosenkranz B, et al. N-acetyltransferase genotypes and the pharmacokinetics and tolerability of para-aminosalicylic acid in patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother. 2015;59(7):4129–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Deshpande D, Pasipanodya JG, Mpagama SG, Srivastava S, Bendet P, Koeuth T, et al. Ethionamide pharmacokinetics/pharmacodynamics-derived dose, the role of MICs in clinical outcome, and the resistance arrow of time in multidrug-resistant tuberculosis. Clin Infect Dis. 2018;67:S317–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee HW, Kim DW, Park JH, Kim S, Lim M, Phapale PB, et al. Pharmacokinetics of prothionamide in patients with multidrug resistant tuberculosis. Int J Tuberc Lung Dis. 2009;13:1161–6.

    CAS  PubMed  Google Scholar 

  69. Mota L, Al-Efraij K, Campbell JR, Cook VJ, Marra F, Johnson J. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis. Int J Tuberulosis Lung Dis. 2016;20:819–26.

    CAS  Google Scholar 

  70. Wilby KJ, Ensom MH, Marra F. Review of evidence for measuring drug concentrations of first-line antitubercular agents in adults. Clin Pharmacokinet. 2014;53:873–90.

    CAS  PubMed  Google Scholar 

  71. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug susceptible tuberculosis. Clin Infect Dis. 2016;63:e147–95.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle John Wilby.

Ethics declarations

Funding

No funding was provided for this manuscript.

Conflict of interest

Dr. Kyle John Wilby and Mrs. Farhat Naz Hussain declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilby, K.J., Hussain, F.N. A Review of Clinical Pharmacokinetic and Pharmacodynamic Relationships and Clinical Implications for Drugs Used to Treat Multi-drug Resistant Tuberculosis. Eur J Drug Metab Pharmacokinet 45, 305–313 (2020). https://doi.org/10.1007/s13318-019-00604-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00604-5

Navigation