Skip to main content

Advertisement

Log in

Population Pharmacokinetics of Voriconazole in Chinese Patients with Hematopoietic Stem Cell Transplantation

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Voriconazole is widely recommended for the prevention and treatment of invasive fungal infections in hematopoietic stem cell transplantation patients. However, its use is limited by a narrow therapeutic range and large inter-individual variability. This study aimed to characterize the pharmacokinetics of voriconazole in Chinese hematopoietic stem cell transplantation patients, to explore factors affecting its pharmacokinetic parameters, and to provide recommendations for its optimal dosing regimens.

Methods

A total of 121 serum concentration samples from 23 patients were retrospectively included. Voriconazole concentrations were detected, and patient clinical data were recorded. Population pharmacokinetic analysis was performed by a non-linear, mixed-effect modeling approach. Goodness-of-fit plots, bootstrap method, prediction-corrected visual predictive check and external validation by an independent group of seven patients were performed to evaluate the final model.

Results

A one-compartment model with first-order elimination successfully described the data. The absorption rate constant was fixed at 1.1 h−1 and bioavailability was fixed at 0.895. The typical values for voriconazole clearance and distribution volume were 9.52 L/h and 155 L, respectively. CYP2C19*2 genotype and mycophenolate mofetil combination presented a significant impact on the clearance. Compared with CYP2C19*2 carriers, voriconazole clearance was proven to be higher in CYP2C19*1/*1 patients.

Conclusions

A population pharmacokinetic model of voriconazole was successfully established in Chinese hematopoietic stem cell transplantation patients. Based on the final model, CYP2C19*2 genotyping coupled with therapeutic drug monitoring seems to be useful to guide voriconazole dosing and to explain subtherapeutic concentrations in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ullmann AJ, Schmidt-Hieber M, Bertz H, Heinz WJ, Kiehl M, Krüger W, et al. Infectious diseases working party of the german society for hematology and medical oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation). Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol. 2016;95(9):1435–55.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Denning DW, Hope WW. Therapy for fungal diseases: opportunities and priorities. Trends Microbiol. 2010;18(5):195–204.

    Article  CAS  PubMed  Google Scholar 

  3. Levine MT, Chandrasekar PH. Adverse effects of voriconazole: over a decade of use. Clin Transplant. 2016;30(11):1377–86.

    Article  PubMed  Google Scholar 

  4. Dolton MJ, McLachlan AJ. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents. 2014;44(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  5. Owusu Obeng A, Egelund EF, Alsultan A, Peloquin CA, Johnson JA. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy. 2014;34(7):703–18.

    Article  CAS  PubMed  Google Scholar 

  6. Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009;53(1):24–34.

    Article  CAS  PubMed  Google Scholar 

  7. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T, et al. Correlation between voriconazole trough plasma concentration and hepato-toxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents. 2009;34(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  9. Smith J, Safdar N, Knasinski V, Simmons W, Bhavnani SM, Ambrose PG, et al. Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother. 2006;50(4):1570–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy ofvoriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55(10):4782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hassan A, Burhenne J, Riedel KD, Weiss J, Mikus G, Haefeli WE, et al. Mod-ulators of very low voriconazole concentrations in routine therapeutic drug monitoring. Ther Drug Monit. 2011;33(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  12. Helsby NA, Burns KE. Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Front Genet. 2012;3:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  14. Makeeva O, Stepanov V, Puzyrev V, Goldstein DB, Grossman I. Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes. Pharmacogenomics. 2008;9(7):847–68.

    Article  CAS  PubMed  Google Scholar 

  15. Farkas A, Daroczi G, Villasurda P, Dolton M, Nakagaki M, Roberts JA. Comparative evaluation of the predictive performances of three different structural population pharmacokinetic models to predict future voriconazole concentrations. Antimicrob Agents Chemother. 2016;60(11):6806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartelink IH, Wolfs T, Jonker M, de Waal M, Egberts TC, Ververs TT, et al. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother. 2013;57(1):235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim IW, Yun HY, Choi B, Han N, Park SY, Lee ES, et al. ABCB1 C3435T genetic polymorphism on population pharmacokinetics of methotrexate after hematopoietic stem cell transplantation in Korean patients: a prospective analysis. Clin Ther. 2012;34(8):1816–26.

    Article  CAS  PubMed  Google Scholar 

  18. Trifilio S, Pennick G, Pi J, Zook J, Golf M, Kaniecki K, et al. Monitoring plasma voriconazole levels may be necessary to avoid subtherapeutic levels in hematopoietic stem cell transplant recipients. Cancer. 2007;109(8):1532–5.

    Article  CAS  PubMed  Google Scholar 

  19. Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  20. Wingard JR, Carter SL, Walsh TJ, Kurtzberg J, Small TN, Baden LR, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood. 2010;116(24):5111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marks DI, Pagliuca A, Kibbler CC, Glasmacher A, Heussel CP, Kantecki M, et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. Br J Haematol. 2011;155(3):318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamoureux F, Duflot T, Woillard JB, Metsu D, Pereira T, Compagnon P, et al. Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. Int J Antimicrob Agents. 2016;47(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  23. Hope WW. Population pharmacokinetics of voriconazole in adults. Antimicrob Agents Chemother. 2012;56(1):526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li ZW, Peng FH, Yan M, Liang W, Liu XL, Wu YQ, et al. Impact of CYP2C19 genotype and liver function on voriconazole pharmacokinetics in renal transplant recipients. Ther Drug Monit. 2017;39(4):422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin XB, Li ZW, Yan M, Zhang BK, Liang W, Wang F, et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 2018;84(7):1587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nomura K, Fujimoto Y, Kanbayashi Y, Ikawa K, Taniwaki M. Pharmacokinetic-pharmacodynamic analysis of voriconazole in Japanese patients with hematological malignancies. Eur J Clin Microbiol Infect Dis. 2008;27(11):1141–3.

    Article  CAS  PubMed  Google Scholar 

  27. Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother. 2014;69(2):463–70.

    Article  CAS  PubMed  Google Scholar 

  28. Han K, Bies R, Johnson H, Capitano B, Venkataramanan R. Population pharmacokinetic evaluation with external validation and Bayesian estimator of voriconazole in liver transplant recipients. Clin Pharmacokinet. 2011;50(3):201–14.

    Article  CAS  PubMed  Google Scholar 

  29. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–7.

    Article  CAS  PubMed  Google Scholar 

  30. Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45(7):649–63.

    Article  CAS  PubMed  Google Scholar 

  31. Teusink A, Vinks A, Zhang K, Davies S, Fukuda T, Lane A, et al. Genotype-directed dosing leads to optimized voriconazole levels in pediatric patients receiving hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(3):482–6.

    Article  CAS  PubMed  Google Scholar 

  32. Hamadeh IS, Klinker KP, Borgert SJ, Richards AI, Li W, Mangal N, et al. Impact of the CYP2C19 genotype on voriconazole exposure in adults with invasive fungal infections. Pharmacogenet Genomics. 2017;27(5):190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the physicians and nurses for their support of this study, and to all the patients who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyun Ren or Yimin Cui.

Ethics declarations

Funding

No source of funding.

Conflicts of interest

All authors declare no conflict of interest.

Ethics approval

All procedures in this study were in accordance with the 1964 Helsinki declaration (and its amendments), and the details of the Ethics Committee or institutional review board which approved the study.

Informed consent

Informed consent was obtained from all patients or care givers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, T., Li, X. et al. Population Pharmacokinetics of Voriconazole in Chinese Patients with Hematopoietic Stem Cell Transplantation. Eur J Drug Metab Pharmacokinet 44, 659–668 (2019). https://doi.org/10.1007/s13318-019-00556-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00556-w

Navigation