Skip to main content
Log in

A Physiologically Based Pharmacokinetic Model for Optimally Profiling Lamotrigine Disposition and Drug–Drug Interactions

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Lamotrigine (Lamictal®) is a broad-spectrum antiepileptic drug available in both immediate-(IR) and extended-release (XR) formulations. Here, we present a new physiologically based pharmacokinetic (PBPK) model for IR and XR formulations of lamotrigine to predict disposition in adults and children, plus drug–drug interactions (DDIs).

Methods

Models for lamotrigine IR and XR formulations were constructed using a Simcyp® Simulator. Concentration–time profiles were simulated for lamotrigine IR single (SD) and steady-state (SS) doses ranging from 25 to 200 mg in adults, as well as 2 mg/kg (SD), and 7.7–9.4 mg/kg (SS) in children aged between 4 and 17 years. Lamotrigine XR profiles were simulated for SD and SS doses ranging from 250 to 400 mg. DDI prediction with lamotrigine was simulated in adults with enzyme-inducing drugs, rifampin (rifampicin) and ritonavir, as well as the enzyme inhibitor, valproic acid.

Results

The lamotrigine model predicted adult area-under-the-curve (AUC) and peak plasma concentration (Cmax) results for IR SD within 35% of observed data; lamotrigine IR SS dosing was within 10% and 30% of observed data, respectively. Pediatric lamotrigine IR SD AUC and Cmax values were within 10% and 15% of observed data, respectively. AUC and Cmax values for lamotrigine XR SD simulated in adults were within 20% of observed data; similarly lamotrigine XR SS parameters were within 10%. Concerning DDI simulation in adults, predicted-to-observed lamotrigine AUC ratios [AUCDDI/AUCalone] were within 15% for ritonavir and rifampin, and 20% for valproic acid.

Conclusions

Our developed PBPK lamotrigine profile accurately predicts DDIs and lamotrigine IR/XR formulation disposition in adults and children. This PBPK model will be helpful in designing future DDI studies for co-administration of lamotrigine with other drugs and in designing individualized patient dosing regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)–part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet. 2013;52(11):927–66.

    Article  CAS  PubMed  Google Scholar 

  2. Patsalos PN, Froscher W, Pisani F, van Rijn CM. The importance of drug interactions in epilepsy therapy. Epilepsia. 2002;32(3):365–85.

    Article  Google Scholar 

  3. Schmidt D, Schachter SC. Drug treatment of epilepsy in adults. BMJ. 2014;348:g254.

    Article  PubMed  Google Scholar 

  4. Karceski S, Morrell MJ, Carpenter D. Treatment of epilepsy in adults: expert opinion, 2005. Epilepsy Behav. 2005;7(Suppl 1):S1–64.

    Article  PubMed  Google Scholar 

  5. Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia. 2000;41(11):1364–74.

    Article  CAS  PubMed  Google Scholar 

  6. Drugs@FDA [online database]. FDA Approved Drug Products: LAMICTAL. U.S. Food & Drug Administration, Silver Spring, MD. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020241. Accessed June 14 2018.

  7. Dickins M, Chen C. Lamotrigine: Chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic Drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 370–9.

    Google Scholar 

  8. Garnett WR. Lamotrigine: pharmacokinetics. J Child Neurol. 1997;12(Suppl 1):S10–5.

    Article  PubMed  Google Scholar 

  9. Tompson DJ, Ali I, Oliver-Willwong R, Job S, Zhu L, Lemme F, et al. Steady-state pharmacokinetics of lamotrigine when converting from a twice-daily immediate-release to a once-daily extended-release formulation in subjects with epilepsy (The COMPASS Study). Epilepsia. 2008;49(3):410–7.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen AF, Land GS, Breimer DD, Yuen AW, Winton C, Peck AW. Lamotrigine, a new anticonvulsant: pharmacokinetics in normal humans. Clin Pharmacol Ther. 1987;42(5):535–41.

    Article  CAS  PubMed  Google Scholar 

  11. Yau MK, Garnett WE, Wargin WA, Pellock JM. A single dose, dose proportionality and bioequivalence study of lamotrigine in normal volunteers. Epilepsia. 1991;32(Suppl 3):8.

    Google Scholar 

  12. Anderson GD, Yau MK, Gidal BE, Harris SJ, Levy RH, Lai AA, et al. Bidirectional interaction of valproate and lamotrigine in healthy subjects. Clin Pharmacol Ther. 1996;60(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  13. Ramsay RE, Pellock JM, Garnett WR, Sanchez RM, Valakas AM, Wargin WA, et al. Pharmacokinetics and safety of lamotrigine (Lamictal) in patients with epilepsy. Epilepsy Res. 1991;10(2–3):191–200.

    Article  CAS  PubMed  Google Scholar 

  14. Parsons DN, Dickins M, Morley TJ. Lamotrigine: Absorption, distribution, and excretion. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic Drugs. 4th ed. New York: Raven Press; 1995. p. 877–81.

    Google Scholar 

  15. Magdalou J, Herber R, Bidault R, Siest G. In vitro N-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J Pharmacol Exp Ther. 1992;260(3):1166–73.

    CAS  PubMed  Google Scholar 

  16. Marcellin P, de Bony F, Garret C, Altman C, Boige V, Castelnau C, et al. Influence of cirrhosis on lamotrigine pharmacokinetics. Br J Clin Pharmacol. 2001;51(5):210–414.

    Google Scholar 

  17. Pennell PB, Peng L, Newport DJ, Ritchie JC, Koganti A, Holley DK, et al. Lamotrigine in pregnancy: clearance, therapeutic drug monitoring, and seizure frequency. Neurology. 2008;70(22 Pt 2):2130–6.

    Article  CAS  PubMed  Google Scholar 

  18. May TW, Rambeck B, Jürgens U. Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Ther Drug Monit. 1996;18(5):523–31.

    Article  CAS  PubMed  Google Scholar 

  19. Grasela TH, Fiedler-Kelly J, Cox E, Womble GP, Risner ME, Chen C. Population pharmacokinetics of lamotrigine adjunctive therapy in adults with epilepsy. J Clin Pharmacol. 1999;39(4):373–84.

    Article  CAS  PubMed  Google Scholar 

  20. Zaccara G, Perucca E. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord. 2014;16(4):409–31.

    PubMed  Google Scholar 

  21. Reimers A, Helde G, Bråthen G, Brodtkorb E. Lamotrigine and its N2-glucuronide during pregnancy: the significance of renal clearance and estradiol. Epilepsy Res. 2011;94(3):198–205.

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Yang K, Choi S, Fischer JH, Jeong H. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos. 2009;37(9):1841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sinz MW, Remmel RP. Isolation and characterization of a novel quaternary ammonium-linked glucuronide of lamotrigine. Drug Metab Dispos. 1991;19(1):149–53.

    CAS  PubMed  Google Scholar 

  24. Doig MV, Clare RA. Use of thermospray liquid chromatography-mass spectrometry to aid in the identification of urinary metabolites of a novel antiepileptic drug, Lamotrigine. J Chromatogr. 1991;554(1–2):181–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lamictal [package insert]. GlaxoSmithKline, LLC, Research Triangle Park, NC 27709. 2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020241s053,020764s046,022251s017lbl.pdf. Accessed 19 Nov 2018.

  26. Johannessen SI, Nattino D, Berry DJ, Bialer M, Krämer G, Tomson T, et al. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit. 2003;25(3):347–63.

    Article  CAS  PubMed  Google Scholar 

  27. Green MD, Tephly TR. Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1.4 protein. Drug Metab Dispos. 1996;24(3):356–63.

    CAS  PubMed  Google Scholar 

  28. Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos. 1998;26(6):507–12.

    CAS  PubMed  Google Scholar 

  29. Argikar UA, Remmel RP. Variation in glucuronidation of lamotrigine in human liver microsomes. Xenobiotica. 2009;39(5):355–63.

    Article  CAS  PubMed  Google Scholar 

  30. Mojarrabi B, Butler R, Mackenzie PI. cDNA cloning and characterization of the human UDP glucuronosyltransferase, UGT1A3. Biochem Biophys Res Commun. 1996;225(3):785–90.

    Article  CAS  PubMed  Google Scholar 

  31. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sager JE, Yu J-T, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebert U, Thong N, Oertel R, Kirch W. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur J Clin Pharmacol. 2000;56(4):299–304.

    Article  CAS  PubMed  Google Scholar 

  34. Hermann R, Knebel NG, Niebch G, Richards L, Borlak J, Locher M. Pharmacokinetic interaction between retigabine and lamotrigine in healthy subjects. Eur J Clin Pharmacol. 2003;58(12):795–802.

    Article  CAS  PubMed  Google Scholar 

  35. Keränen T, Sorri A, Moilanen E, Ylitalo P. Effects of charcoal on the absorption and elimination of the antiepileptic drugs lamotrigine and oxcarbazepine. Arzneimittelforschung. 2010;60(7):421–6.

    PubMed  Google Scholar 

  36. Srichaiya A, Longchoopol C, Oo-Puthinan S, Sayasathid J, Sripalakit P, Viyoch J. Bioequivalence of generic lamotrigine 100-mg tablets in healthy Thai male volunteers: a randomized, single-dose, two-period, two-sequence crossover study. Clin Ther. 2008;30(10):1844–51.

    Article  CAS  PubMed  Google Scholar 

  37. Perez-Lloret S, Olmos L, de Mena F, Pieczanski P, Rodriguez Moncalvo JJ. Bioequivalence of lamotrigine 50-mg tablets in healthy male volunteers: a randomized, single-dose, 2-period, 2-sequence crossover study. Arzneimittelforschung. 2012;62(10):470–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yuen AW, Peck AW. Lamotrigine pharmacokinetics: oral and i.v. infusion in man. Br J Clin Pharmacol. 1988;26:242P.

    Google Scholar 

  39. Peck AW. Clinical pharmacology of lamotrigine. Epilepsia. 1991;32(Suppl 2):S9–12.

    Article  PubMed  Google Scholar 

  40. Yuen AW. Lamotrigine. In: Pisani E, Avanzini G, Richens A, editors. New epileptic drugs. Amsterdam: Elsevier Science Publishers; 1991.

    Google Scholar 

  41. Vaithianathan S, Raman S, Jiang W, Ting TY, Kane MA, Polli JE. Biopharmaceutic risk assessment of brand and generic lamotrigine tablets. Mol Pharm. 2015;12(7):2436–43.

    Article  CAS  PubMed  Google Scholar 

  42. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buxton IR, Currie R, Dela-Cruz MA, Goodson GW, Karolak W, Maleki M et al., inventors; Glaxosmithkline, assignee. Novel formulations and method of treatment. United States patent US 2004/0192690 A1. 2004 Sep 30, 2004.

  44. LAM105379 [Internet]. A pivotal single-dose randomised, parallel-group, open-label study to demonstrate bioequivalence of 300 mg lamotrigine XR relative to 100 mg + 200 mg lamotrigine XR and to demonstrate lack of food effect on 300 mg lamotrigine XR in healthy male and female volunteers. GlaxoSmithKline Clinical Study Register, Research Triangle Park, NC 27709. 2007. https://www.gsk-clinicalstudyregister.com/files2/gsk-105377-clinical-study-report-redact.pdf. Accessed 19 Nov 2018.

  45. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci. 1999;88(7):731–8.

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data. J Pharm Sci. 2002;91(2):534–42.

    Article  CAS  PubMed  Google Scholar 

  47. Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19(10):1400–16.

    Article  CAS  PubMed  Google Scholar 

  48. Tchaparian E, Tang L, Xu G, Huang T, Jin L. Cell based experimental models as toold for prediction of human intestinal absorption. 15th North American ISSX Meeting; San Diego, CA 2008.

  49. Sugano K. Computational oral absorption simulation for low-solubility compounds. Chem Biodivers. 2009;6(11):2014–29.

    Article  CAS  PubMed  Google Scholar 

  50. Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts. 2012;2(4):175–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jayanthi B, Manna PK, Madhusudhan S, Mohanta GP, Manavalan R. Per oral extended release products–an overview. J Appl Pharm Sci. 2011;1(2):50–5.

    Google Scholar 

  52. Shargel L, Wu-Pong S, Yu ABC. Modified-Release Drug Products. In: Brown M, Naglieri C, editors. Applied biopharmaceutics and pharmacokinetics. 5th ed. New York: Appleton and Lange Reviews/McGraw-Hill; 2005. p. 515–52.

    Google Scholar 

  53. Stamatopoulos K. In silico tools to simulate the regional differences of the human GI tract. European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) Leuven, Belgium 2018. https://gbiomed.kuleuven.be/english/research/50000715/50000716/ungap/stamatopoulos. Accessed 19 Nov 2018.

  54. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jawad S, Yuen WC, Peck AW, Hamilton MJ, Oxley JR, Richens A. Lamotrigine: single-dose pharmacokinetics and initial 1 week experience in refractory epilepsy. Epilepsy Res. 1987;1(3):194–201.

    Article  CAS  PubMed  Google Scholar 

  56. Polepally AR, Brundage RC, Remmel RP, Leppik IE, Pennell PB, White JR, et al. Lamotrigine pharmacokinetics following oral and stable-labeled intravenous administration in young and elderly adult epilepsy patients: effect of age. Epilepsia. 2018;59(9):1718–26.

    Article  CAS  PubMed  Google Scholar 

  57. Yuen AW, Land G, Weatherley BC, Peck AW. Sodium valproate acutely inhibits lamotrigine metabolism. Br J Clin Pharmacol. 1992;33(5):511–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wootton R, Soul-Lawton J, Rolan PE, Sheung CT, Cooper JD, Posner J. Comparison of the pharmacokinetics of lamotrigine in patients with chronic renal failure and healthy volunteers. Br J Clin Pharmacol. 1997;43(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  59. Fillastre JP, Taburet AM, Fialaire A, Etienne I, Bidault R, Singlas E. Pharmacokinetics of lamotrigine in patients with renal impairment: influence of haemodialysis. Drugs Exp Clin Res. 1993;19(1):25–32.

    CAS  PubMed  Google Scholar 

  60. Chen C, Casale EJ, Duncan B, Culverhouse EH, Gilman J. Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy. 1999;19(4):437–41.

    Article  PubMed  Google Scholar 

  61. Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.

    Article  CAS  PubMed  Google Scholar 

  62. Birnbaum AK, Kriel RL, Im Y, Remmel RP. Relative bioavailability of lamotrigine chewable dispersible tablets administered rectally. Pharmacotherapy. 2001;21(2):158–62.

    Article  CAS  PubMed  Google Scholar 

  63. van Luin M, Colbers A, Verwey-van Wissen CP, van Ewijk-Beneken-Kolmer EW, van der Kolk M, Hoitsma A, et al. The effect of raltegravir on the glucuronidation of lamotrigine. J Clin Pharmacol. 2009;49(10):1220–7.

    Article  CAS  PubMed  Google Scholar 

  64. Incecayir T, Agabeyoglu I, Gucuyener K. Comparison of plasma and saliva concentrations of lamotrigine in healthy volunteers. Arzneimittelforschung. 2007;57(8):517–21.

    CAS  PubMed  Google Scholar 

  65. Jann MW, Hon YY, Shamsi SA, Zheng J, Awad EA, Spratlin V. Lack of pharmacokinetic interaction between lamotrigine and olanzapine in healthy volunteers. Pharmacotherapy. 2006;26(5):627–33.

    Article  CAS  PubMed  Google Scholar 

  66. Sidhu J, Job S, Bullman J, Francis E, Abbott R, Ascher J, et al. Pharmacokinetics and tolerability of lamotrigine and olanzapine coadministered to healthy subjects. Br J Clin Pharmacol. 2006;61(4):420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Almeida L, Nunes T, Sicard E, Rocha JF, Falcão A, Brunet JS, et al. Pharmacokinetic interaction study between eslicarbazepine acetate and lamotrigine in healthy subjects. Acta Neurol Scand. 2010;121(4):257–64.

    Article  CAS  PubMed  Google Scholar 

  68. Chien S, Yao C, Mertens A, Verhaeghe T, Solanki B, Doose DR, et al. An interaction study between the new antiepileptic and CNS drug carisbamate (RWJ-333369) and lamotrigine and valproic acid. Epilepsia. 2007;48(7):1328–38.

    Article  CAS  PubMed  Google Scholar 

  69. Doose DR, Brodie MJ, Wilson EA, Chadwick D, Oxbury J, Berry DJ, et al. Topiramate and lamotrigine pharmacokinetics during repetitive monotherapy and combination therapy in epilepsy patients. Epilepsia. 2003;44(7):917–22.

    Article  CAS  PubMed  Google Scholar 

  70. Colucci R, Glue P, Holt B, Banfield C, Reidenberg P, Meehan JW, et al. Effect of felbamate on the pharmacokinetics of lamotrigine. J Clin Pharmacol. 1996;36(7):634–8.

    Article  CAS  PubMed  Google Scholar 

  71. van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, Caliskan-Yassen N, et al. Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2006;80(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  72. Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kälviäinen R, et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 2013;53(3):551–63.

    Article  CAS  Google Scholar 

  73. Stephen LJ, Brodie MJ. Lamotrigine: Clinical efficacy and use in Epilepsy. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 389–402.

    Google Scholar 

  74. Patsalos PN. Drug interactions with the newer antiepileptic drugs (AEDs)—Part 2: pharmacokinetic and pharmacodynamic interactions between AEDs and drugs used to treat non-epilepsy disorders. Clin Pharmacokinet. 2013;52(12):1045–61.

    Article  CAS  PubMed  Google Scholar 

  75. Smith CM, Faucette SR, Wang H, LeCluyse EL. Modulation of UDP-glucuronosyltransferase 1A1 in primary human hepatocytes by prototypical inducers. J Biochem Mol Toxicol. 2005;19(2):96–108.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29:687–710.

    Article  CAS  PubMed  Google Scholar 

  77. Doostdar H, Grant MH, Melvin WT, Wolf CR, Burke MD. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HEPG2 hepatoma cells. Biochem Pharmacol. 1993;46(4):629–35.

    Article  CAS  PubMed  Google Scholar 

  78. Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol. 1999;48(2):168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang Z, Wong T, Hashizume T, Dickmann LZ, Scian M, Koszewski NJ, et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability. Endocrinology. 2014;155(6):2052–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ritonavir. In: AHFS Drug Information. Bethesda, MD: American Society of Health-System Pharmacists, Inc; Updated Feb 27, 2018.

  81. Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;42(7):1048–59.

    Article  CAS  PubMed  Google Scholar 

  82. Burger DM, Huisman A, Van Ewijk N, Neisingh H, Van Uden P, Rongen GA, et al. The effect of atazanavir and atazanavir/ritonavir on UDP-glucuronosyltransferase using lamotrigine as a phenotypic probe. Clin Pharmacol Ther. 2008;84(6):698–703.

    Article  CAS  PubMed  Google Scholar 

  83. Rowland A, Elliot DJ, Williams JA, Mackenzie PI, Dickinson RG, Miners JO. In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos. 2006;34(6):1055–62.

    CAS  PubMed  Google Scholar 

  84. Wattanachai N, Tassaneeyakul W, Rowland A, Elliot DJ, Bowalgaha K, Knights KM, et al. Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance. Drug Metab Dispos. 2012;40(5):982–9.

    Article  CAS  PubMed  Google Scholar 

  85. Conner TM, Nikolian VC, Georgoff PE, Pai MP, Alam HB, Sun D, et al. Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and divalproex. Eur J Pharm Sci. 2018;111:465–81.

    Article  CAS  PubMed  Google Scholar 

  86. Perucca E, Kwan P. Overtreatment in epilepsy: how it occurs and how it can be avoided. CNS Drugs. 2005;19(11):897–908.

    Article  CAS  PubMed  Google Scholar 

  87. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61(3):246–55.

    Article  CAS  PubMed  Google Scholar 

  88. Johannessen Landmark C, Patsalos PN. Methodologies used to identify and characterize interactions among antiepileptic drugs. Expert Rev Clin Pharmacol. 2012;5(3):281–92.

    Article  CAS  PubMed  Google Scholar 

  89. Kendall T, Morriss R, Mayo-Wilson E, Marcus E. Assessment and management of bipolar disorder: summary of updated NICE guidance. BMJ. 2014;349:g5673.

    Article  CAS  PubMed  Google Scholar 

  90. Shorvon SD. Drug treatment of epilepsy in the century of the ILAE: the second 50 years, 1959–2009. Epilepsia. 2009;50(Suppl 3):93–130.

    Article  PubMed  Google Scholar 

  91. Johannessen Landmark C, Patsalos PN. Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev Neurother. 2010;10(1):119–40.

    Article  CAS  PubMed  Google Scholar 

  92. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  93. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003;2(6):347–56.

    Article  CAS  PubMed  Google Scholar 

  94. Lalic M, Cvejic J, Popovic J, Bozic K, Golocorbin-Kon S, Al-Salami H, et al. Lamotrigine and valproate pharmacokinetics interactions in epileptic patients. Eur J Drug Metab Pharmacokinet. 2009;34(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  95. Gidal BE, Sheth R, Parnell J, Maloney K, Sale M. Evaluation of VPA dose and concentration effects on lamotrigine pharmacokinetics: implications for conversion to lamotrigine monotherapy. Epilepsy Res. 2003;57(2–3):85–93.

    Article  CAS  PubMed  Google Scholar 

  96. Mackenzie PI, Hu DG, Gardner-Stephen DA. The regulation of UDP-glucuronosyltransferase genes by tissue-specific and ligand-activated transcription factors. Drug Metab Rev. 2010;42(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  97. Gufford BT, Robarge JD, Eadon MT, Gao H, Lin H, Liu Y, et al. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes. Pharmacol Res Perspect. 2018;6(2):e00386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miners JO, Knights KM, Houston JB, Mackenzie PI. In vitro-in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol. 2006;71(11):1531–9.

    Article  CAS  PubMed  Google Scholar 

  99. Remmel RP, Zhou J, Argikar UA. UDP-Glucuronosyltransferases. In: Pearson PG, Wienkers LC, editors. Handbook of drug metabolism. 2nd ed. New York: Informa Healthcare USA, Inc; 2009. pp. 137–77.

  100. Chen S, Beaton D, Nguyen N, Senekeo-Effenberger K, Brace-Sinnokrak E, Argikar U, et al. Tissue-specific, inducible, and hormonal control of the human UDP-glucuronosyltransferase-1 (UGT1) locus. J Biol Chem. 2005;280(45):37547–57.

    Article  CAS  PubMed  Google Scholar 

  101. Senekeo-Effenberger K, Chen S, Brace-Sinnokrak E, Bonzo JA, Yueh MF, Argikar U, et al. Expression of the human UGT1 locus in transgenic mice by 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (WY-14643) and implications on drug metabolism through peroxisome proliferator-activated receptor alpha activation. Drug Metab Dispos. 2007;35(3):419–27.

    Article  CAS  PubMed  Google Scholar 

  102. Luo G, Cunningham M, Kim S, Burn T, Lin J, Sinz M, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30(7):795–804.

    Article  CAS  PubMed  Google Scholar 

  103. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2(8):473–81.

    Article  CAS  PubMed  Google Scholar 

  104. Guideline on the investigation of drug interactions. London, UK: Committee for Human Medicinal Products, European Medicines Agency 2012 Last updated: Mar 6, 2015. https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf. Accessed 19 Nov 2018.

  105. Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018. https://doi.org/10.1002/cpt.1013.

  106. Wagner C, Pan Y, Hsu V, Sinha V, Zhao P. Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet. 2016;55(4):475–83.

    Article  CAS  PubMed  Google Scholar 

  107. Chen C, Wright J, Gidal B, Messenheimer J. Assessing impact of real-world dosing irregularities with lamotrigine extended-release and immediate-release formulations by pharmacokinetic simulation. Ther Drug Monit. 2013;35(2):188–93.

    Article  CAS  PubMed  Google Scholar 

  108. Dulac O. General principles: use of antiepileptic drugs in children. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, editors. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 119–31.

    Google Scholar 

  109. Gilman JT, Duchowny M, Campo AE. Pharmacokinetic considerations in the treatment of childgood epilepsy. Pediatr Drugs. 2003;5(4):267–77.

    Article  Google Scholar 

  110. Yu G, Zheng QS, Li GF. Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. AAPS J. 2014;16(6):1162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dickinson GL, Rostami-Hodjegan A. Building virtual human populations: assessing the propagation of genetic variability in drug metabolism to pharmacokinetics and pharmacodynamics. In: Bertau M, Mosekilde E, Westerhoff HV, editors. Biosimulation in drug development. Weinheim: Wiley-VCH; 2008.

    Google Scholar 

  112. Polepally AR, Remmel RP, Brundage RC, Leppik IE, Rarick JO, Ramsay RE, et al. Steady-state pharmacokinetics and bioavailability of immediate-release and extended-release formulations of lamotrigine in elderly epilepsy patients: use of stable isotope methodology. J Clin Pharmacol. 2015;55(10):1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gidal BE. Drug absorption in the elderly: biopharmaceutical considerations for the antiepileptic drugs. Epilepsy Res. 2006;68(Suppl 1):S65–9.

    Article  CAS  PubMed  Google Scholar 

  114. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):4–14.

    Google Scholar 

  115. Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 1989;9(2):297–301.

    Article  CAS  PubMed  Google Scholar 

  116. Hussein Z, Posner J. Population pharmacokinetics of lamotrigine monotherapy in patients with epilepsy: retrospective analysis of routine monitoring data. Br J Clin Pharmacol. 1997;43(5):457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brzaković B, Vučićević K, Kovačević SV, Miljković B, Prostran M, Martinović Ž, et al. Pharmacokinetics of lamotrigine in paediatric and young adult epileptic patients–nonlinear mixed effects modelling approach. Eur J Clin Pharmacol. 2014;70(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  118. Rivas N, Buelga DS, Elger CE, Santos-Borbujo J, Otero MJ, Domínguez-Gil A, et al. Population pharmacokinetics of lamotrigine with data from therapeutic drug monitoring in German and Spanish patients with epilepsy. Ther Drug Monit. 2008;30(4):483–9.

    CAS  PubMed  Google Scholar 

  119. Milosheska D, Lorber B, Vovk T, Kastelic M, Dolžan V, Grabnar I. Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. Br J Clin Pharmacol. 2016;82(2):399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. LEP111102 [Internet]. A Pivotal, Single-Dose, Randomised, Parallel-Group, Open-Label Study to Demonstrate Bioequivalence of 250 mg Lamotrigine XR relative to 200 mg + 50 mg Lamotrigine XR and to Demonstrate Lack of Food Effect on 250 mg Lamotrigine XR in Healthy Male and Female Volunteers. GlaxoSmithKline Clinical Study Register, Research Triangle Park, NC 27709. 2008. https://www.gsk-clinicalstudyregister.com/files2/lep111102-clinical-study-report-redact.pdf. Accessed June 14 2018.

  121. LAM105377 [Internet]. A randomised, open-label, parallel-group design study to evaluate the pharmacokinetic characteristics, safety and tolerability of single oral doses of three prototype 300 mg enteric coated—modified release formulations of Lamotrigine in healthy subjects. GlaxoSmithKline Clinical Study Registry, Research Triangle Park, NC 27709. 2006. https://www.gsk-clinicalstudyregister.com/files2/gsk-105377-clinical-study-report-redact.pdf. Accessed 19 Nov 2018.

  122. Otoul C, De Smedt H, Stockis A. Lack of pharmacokinetic interaction of levetiracetam on carbamazepine, valproic acid, topiramate, and lamotrigine in children with epilepsy. Epilepsia. 2007;48(11):2111–5.

    Article  CAS  PubMed  Google Scholar 

  123. Rambeck B, Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet. 1993;25(6):433–43.

    Article  CAS  PubMed  Google Scholar 

  124. Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Ohshita H, et al. Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver. Drug Metab Dispos. 2012;40(2):322–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Simcyp Limited., a Certara Company, is gratefully acknowledged for an academic license for the Simcyp® population-based simulator and for providing user support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest relevant to the content of this article.

Funding

This work was sponsored by the Husson University Research Grant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Supplementary material 2 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conner, T.M., Reed, R.C. & Zhang, T. A Physiologically Based Pharmacokinetic Model for Optimally Profiling Lamotrigine Disposition and Drug–Drug Interactions. Eur J Drug Metab Pharmacokinet 44, 389–408 (2019). https://doi.org/10.1007/s13318-018-0532-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0532-4

Navigation