Skip to main content
Log in

Effects of Phenothiazines on Aldehyde Oxidase Activity Towards Aldehydes and N-Heterocycles: an In Vitro and In Silico Study

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2019

This article has been updated

Abstract

Background

Aldehyde oxidase (AOX) is an important molybdenum-containing enzyme with high similarity with xanthine oxidase (XO). AOX involved in the metabolism of a large array of aldehydes and N-heterocyclic compounds and its activity is highly substrate-dependent.

Objectives

The aim of this work was to study the effect of five important phenothiazine drugs on AOX activity using benzaldehyde and phenanthridine as aldehyde and N-heterocyclic substrates, respectively.

Methods

The effect of trifluperazine, chlorpromazine, perphenazine, thioridazine and promethazine on rat liver AOX was measured spectrophotometrically. To predict the mode of interactions between the studied compounds and AOX, a combination of homology modeling and a molecular docking study was performed.

Results

All phenothiazines could inhibit AOX activity measured either by phenanthridine or benzaldehyde with almost no effect on XO activity. In the case of benzaldehyde oxidation, the lowest and highest half-maximal inhibitory concentration (IC50) values were obtained for promethazine (IC50 = 0.9 µM), and trifluoperazine (IC50 = 3.9 µM), respectively; whereas perphenazine (IC50 = 4.3 µM), and trifluoperazine (IC50 = 49.6 µM) showed the strongest and weakest inhibitory activity against AOX-catalyzed phenanthridine oxidation, respectively. The in silico findings revealed that the binding site of thioridazine is near the dimer interference, and that hydrophobic interactions are of great importance in all the tested phenothiazines.

Conclusion

The five studied phenothiazine drugs showed dual inhibitory effects on AOX activity towards aldehydes and N-heterocycles as two major classes of enzyme substrates. Most of the interactions between the phenothiazine-related drugs and AOX in the binding pocket showed a hydrophobic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 18 January 2019

    Unfortunately, the original article was published with error in author names. The author names are corrected here by this correction paper. The original article has been corrected.

References

  1. Argikar UA, Potter PM, Hutzler JM, Marathe PH. Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and udp-glucuronosyltransferase: focus on reaction phenotyping and prediction of human clearance. AAPS J. 2016;18(6):1391–405. https://doi.org/10.1208/s12248-016-9962-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cerny MA. Prevalence of non-cytochrome P450-mediated metabolism in food and drug administration-approved oral and intravenous drugs: 2006–2015. Drug Metab Dispos. 2016;44(8):1246–52. https://doi.org/10.1124/dmd.116.070763.

    Article  CAS  PubMed  Google Scholar 

  3. Gan J, Ma S, Zhang D. Non-cytochrome P450-mediated bioactivation and its toxicological relevance. Drug Metab Rev. 2016;48(4):473–501. https://doi.org/10.1080/03602532.2016.1225756.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem. 2016;14(28):6611–37. https://doi.org/10.1039/c6ob00936k.

    Article  CAS  PubMed  Google Scholar 

  5. Rashidi MR, Smith JA, Clarke SE, Beedham C. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Drug Metab Dispos. 1997;25(7):805–13.

    CAS  PubMed  Google Scholar 

  6. Beedham C, Miceli JJ, Obach RS. Ziprasidone metabolism, aldehyde oxidase, and clinical implications. J Clin Psychopharmacol. 2003;23(3):229–32. https://doi.org/10.1097/01.jcp.0000084028.22282.f2.

    Article  CAS  PubMed  Google Scholar 

  7. Rashidi MR, Beedham C, Smith JS, Davaran S. In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase. Drug Metab Pharmacokinet. 2007;22(4):299–306.

    Article  CAS  Google Scholar 

  8. Klecker RW, Cysyk RL, Collins JM. Zebularine metabolism by aldehyde oxidase in hepatic cytosol from humans, monkeys, dogs, rats, and mice: influence of sex and inhibitors. Bioorg Med Chem. 2006;14(1):62–6. https://doi.org/10.1016/j.bmc.2005.07.053.

    Article  CAS  PubMed  Google Scholar 

  9. Jordan CG, Rashidi MR, Laljee H, Clarke SE, Brown JE, Beedham C. Aldehyde oxidase-catalysed oxidation of methotrexate in the liver of guinea-pig, rabbit and man. J Pharm Pharmacol. 1999;51(4):411–8.

    Article  CAS  Google Scholar 

  10. Garattini E, Terao M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev. 2011;43(3):374–86. https://doi.org/10.3109/03602532.2011.560606.

    Article  CAS  PubMed  Google Scholar 

  11. Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol. 2012;8(4):487–503. https://doi.org/10.1517/17425255.2012.663352.

    Article  CAS  PubMed  Google Scholar 

  12. Rashidi MR, Soltani S. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov. 2017;12(3):305–16. https://doi.org/10.1080/17460441.2017.1284198.

    Article  CAS  PubMed  Google Scholar 

  13. Barr JT, Jones JP. Inhibition of human liver aldehyde oxidase: implications for potential drug–drug interactions. Drug Metab Dispos. 2011;39(12):2381–6. https://doi.org/10.1124/dmd.111.041806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glintborg B, Andersen SE, Dalhoff K. Drug–drug interactions among recently hospitalised patients–frequent but mostly clinically insignificant. Eur J Clin Pharmacol. 2005;61(9):675–81. https://doi.org/10.1007/s00228-005-0978-6.

    Article  PubMed  Google Scholar 

  15. McCance-Katz EF, Sullivan LE, Nallani S. Drug interactions of clinical importance among the opioids, methadone and buprenorphine, and other frequently prescribed medications: a review. Am J Addict. 2010;19(1):4–16. https://doi.org/10.1111/j.1521-0391.2009.00005.x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cascorbi I. Drug interactions–principles, examples and clinical consequences. Dtsch Arzteblatt Int. 2012;109(33–34):546–55. https://doi.org/10.3238/arztebl.2012.0546 (quiz 56).

    Article  Google Scholar 

  17. Siah M, Farzaei MH, Ashrafi-Kooshk MR, Adibi H, Arab SS, Rashidi MR, et al. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: an in vitro study. Bioorg Chem. 2016;64:74–84. https://doi.org/10.1016/j.bioorg.2015.12.004.

    Article  CAS  PubMed  Google Scholar 

  18. Tayama Y, Sugihara K, Sanoh S, Miyake K, Morita S, Kitamura S, et al. Effect of tea beverages on aldehyde oxidase activity. Drug Metab Pharmacokinet. 2011;26(1):94–101.

    Article  CAS  Google Scholar 

  19. Nirogi R, Kandikere V, Palacharla RC, Bhyrapuneni G, Kanamarlapudi VB, Ponnamaneni RK, et al. Identification of a suitable and selective inhibitor towards aldehyde oxidase catalyzed reactions. Xenobiotica. 2014;44(3):197–204. https://doi.org/10.3109/00498254.2013.819594.

    Article  CAS  PubMed  Google Scholar 

  20. Obach RS, Huynh P, Allen MC, Beedham C. Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol. 2004;44(1):7–19. https://doi.org/10.1177/0091270003260336.

    Article  CAS  PubMed  Google Scholar 

  21. Johns DG. Human liver aldehyde oxidase: differential inhibition of oxidation of charged and uncharged substrates. J Clin Invest. 1967;46(9):1492–505. https://doi.org/10.1172/jci105641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barr JT, Jones JP. Evidence for substrate-dependent inhibition profiles for human liver aldehyde oxidase. Drug Metab Dispos. 2013;41(1):24–9. https://doi.org/10.1124/dmd.112.048546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pirouzpanah S, Rashidi MR, Delazar A, Razavieh SV, Hamidi A. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase. Chem Pharm Bull. 2006;54(1):9–13.

    Article  Google Scholar 

  24. Johnson C, Stubley-Beedham C, Stell JG. Hydralazine: a potent inhibitor of aldehyde oxidase activity in vitro and in vivo. Biochem Pharmacol. 1985;34(24):4251–6.

    Article  CAS  Google Scholar 

  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/s0022-2836(05)80360-2.

    Article  CAS  Google Scholar 

  26. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 2006;34((Database issue)):D187–91. https://doi.org/10.1093/nar/gkj161.

    Article  CAS  PubMed  Google Scholar 

  27. Coelho C, Foti A, Hartmann T, Santos-Silva T, Leimkuhler S, Romao MJ. Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol. 2015;11(10):779–83. https://doi.org/10.1038/nchembio.1895.

    Article  CAS  PubMed  Google Scholar 

  28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. https://doi.org/10.1038/msb.2011.75.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–5.

    Article  CAS  Google Scholar 

  30. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35((Web Server issue)):W375–83. https://doi.org/10.1093/nar/gkm216.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Melo F, Devos D, Depiereux E, Feytmans E. ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Biol. 1997;5:187–90.

    CAS  PubMed  Google Scholar 

  32. Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010–3.

    CAS  PubMed  Google Scholar 

  33. Allinger NL. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc. 1977;99(25):8127–34. https://doi.org/10.1021/ja00467a001.

    Article  CAS  Google Scholar 

  34. Dewar MJS, Thiel W. Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J Am Chem Soc. 1977;99(15):4907–17. https://doi.org/10.1021/ja00457a005.

    Article  CAS  Google Scholar 

  35. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grant JA, Gallardo MA, Pickup BT. A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem. 1996;17(14):1653–66. https://doi.org/10.1002/(sici)1096-987x(19961115)17:14%3c1653:aid-jcc7%3e3.0.co;2-k.

    Article  CAS  Google Scholar 

  37. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng. 1995;8(2):127–34.

    Article  CAS  Google Scholar 

  38. Si Yoshihara, Tatsumi K. Kinetic and inhibition studies on reduction of diphenyl sulfoxide by guinea pig liver aldehyde oxidase. Arch Biochem Biophys. 1986;249(1):8–14. https://doi.org/10.1016/0003-9861(86)90554-0.

    Article  Google Scholar 

  39. Garattini E, Mendel R, Romao MJ, Wright R, Terao M. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J. 2003;372(Pt 1):15–32. https://doi.org/10.1042/bj20030121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamzeh-Mivehroud M, Rahmani S, Feizi MA, Dastmalchi S, Rashidi MR. In vitro and in silico studies to explore structural features of flavonoids for aldehyde oxidase inhibition. Arch Pharm. 2014;347(10):738–47. https://doi.org/10.1002/ardp.201400076.

    Article  CAS  Google Scholar 

  41. Pirouzpanah S, Hanaee J, Razavieh SV, Rashidi MR. Inhibitory effects of flavonoids on aldehyde oxidase activity. J Enzyme Inhib Med Chem. 2009;24(1):14–21. https://doi.org/10.1080/14756360701841301.

    Article  CAS  PubMed  Google Scholar 

  42. Brunton LL, Gilman A, Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2006.

    Google Scholar 

  43. Eggert Hansen C, Rosted Christensen T, Elley J, Bolvig Hansen L, Kragh-Sorensen P, Larsen NE, et al. Clinical pharmacokinetic studies of perphenazine. Br J Clin Pharmacol. 1976;3(5):915–23.

    Article  CAS  Google Scholar 

  44. Wallace JE, Shimek EL Jr, Harris SC, Stavchansky S. Determination of promethazine in serum by liquid chromatography. Clin Chem. 1981;27(2):253–5.

    CAS  PubMed  Google Scholar 

  45. Daniel WA, Syrek M, Haduch A, Wojcikowski J. Pharmacokinetics and metabolism of thioridazine during co-administration of tricyclic antidepressants. Br J Pharmacol. 2000;131(2):287–95. https://doi.org/10.1038/sj.bjp.0703540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Midha KK, Korchinski ED, Verbeeck RK, Roscoe RM, Hawes EM, Cooper JK, et al. Kinetics of oral trifluoperazine disposition in man. Br J Clin Pharmacol. 1983;15(3):380–2.

    Article  CAS  Google Scholar 

  47. Cerqueira NM, Coelho C, Bras NF, Fernandes PA, Garattini E, Terao M, et al. Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. J Biol Inorg Chem. 2015;20(2):209–17. https://doi.org/10.1007/s00775-014-1198-2.

    Article  CAS  PubMed  Google Scholar 

  48. Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, et al. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci. 2013;70(10):1807–30. https://doi.org/10.1007/s00018-012-1229-5.

    Article  CAS  PubMed  Google Scholar 

  49. Garattini E, Fratelli M, Terao M. Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci. 2008;65(7–8):1019–48. https://doi.org/10.1007/s00018-007-7398-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was a part of a MSc thesis and the authors are grateful to the School of Pharmacy and Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, for providing the necessary facilities during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Reza Rashidi.

Ethics declarations

Funding

No funding was received for the conduct of this study.

Conflict of Interest

All the authors have no conflict of interest to declare.

Ethics Approval

The study was approved by the local and national ethics committees.

Additional information

The original version of this article was revised: Author names were incorrectly published and corrected here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deris-Abdolahpour, F., Abdolalipouran-Sadegh, L., Dastmalchi, S. et al. Effects of Phenothiazines on Aldehyde Oxidase Activity Towards Aldehydes and N-Heterocycles: an In Vitro and In Silico Study. Eur J Drug Metab Pharmacokinet 44, 275–286 (2019). https://doi.org/10.1007/s13318-018-0514-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0514-6

Navigation