Skip to main content
Log in

Pharmacokinetics of the Novel, Selective, Non-steroidal Mineralocorticoid Receptor Antagonist Finerenone in Healthy Volunteers: Results from an Absolute Bioavailability Study and Drug–Drug Interaction Studies In Vitro and In Vivo

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Finerenone is a selective, non-steroidal mineralocorticoid receptor antagonist. In vivo and in vitro studies were performed to assess absolute bioavailability of finerenone, the effect of metabolic enzyme inhibitors on the pharmacokinetics of finerenone and its metabolites, the quantitative contribution of the involved enzymes cytochrome P450 (CYP) 3A4 and CYP2C8 and the relevance of gut wall versus liver metabolism.

Methods

The pharmacokinetics, safety and tolerability of finerenone (1.25–10 mg orally or 0.25–1.0 mg intravenously) were evaluated in healthy male volunteers in four crossover studies. Absolute bioavailability was assessed in volunteers receiving finerenone orally and by intravenous infusion (n = 15) and the effects of erythromycin (n = 15), verapamil (n = 13) and gemfibrozil (n = 16) on finerenone pharmacokinetics were investigated. Finerenone was also incubated with cryopreserved human hepatocytes in vitro in the presence of erythromycin, verapamil or gemfibrozil.

Results

Finerenone absolute bioavailability was 43.5% due to first-pass metabolism in the gut wall and liver. The geometric mean AUC0– ratios of finerenone (drug + inhibitor/drug alone) were 3.48, 2.70 and 1.10 with erythromycin, verapamil and gemfibrozil, respectively. The contribution ratio of CYP3A4 to the metabolic clearance of finerenone derived from these values was 0.88–0.89 and was consistent with estimations based on in vitro data, with the remaining metabolic clearance due to CYP2C8 involvement.

Conclusion

Finerenone is predominantly metabolized by CYP3A4 in the gut wall and liver. Increases in systemic exposure upon concomitant administration of inhibitors of this isoenzyme are predictable and consistent with in vitro data. Inhibition of CYP2C8, the second involved metabolic enzyme, has no relevant effect on finerenone in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension. 2015;65(2):257–63. https://doi.org/10.1161/hypertensionaha.114.04488.

    Article  CAS  PubMed  Google Scholar 

  2. Schwenk MH, Hirsch JS, Bomback AS. Aldosterone blockade in CKD: emphasis on pharmacology. Adv Chronic Kidney Dis. 2015;22(2):123–32. https://doi.org/10.1053/j.ackd.2014.08.003.

    Article  PubMed  Google Scholar 

  3. Kolkhof P, Bärfacker L. 30 years of the mineralocorticoid receptor: mineralocorticoid receptor antagonists: 60 years of research and development. J Endocrinol. 2017;234(1):T125–40. https://doi.org/10.1530/joe-16-0600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolkhof P, Jaisser F, Kim SY, Filippatos G, Nowack C, Pitt B. Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases: comparison at bench and bedside. Handb Exp Pharmacol. 2017;243:271–305. https://doi.org/10.1007/164_2016_76.

    Article  CAS  PubMed  Google Scholar 

  5. Bärfacker L, Kuhl A, Hillisch A, Grosser R, Figueroa-Perez S, Heckroth H, et al. Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012;7(8):1385–403. https://doi.org/10.1002/cmdc.201200081.

    Article  CAS  PubMed  Google Scholar 

  6. Kolkhof P, Nowack C, Eitner F. Nonsteroidal antagonists of the mineralocorticoid receptor. Curr Opin Nephrol Hypertens. 2015;24(5):417–24. https://doi.org/10.1097/mnh.0000000000000147.

    Article  CAS  PubMed  Google Scholar 

  7. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Barfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64(1):69–78. https://doi.org/10.1097/fjc.0000000000000091.

    Article  CAS  PubMed  Google Scholar 

  8. Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol. 2012;350(2):310–7. https://doi.org/10.1016/j.mce.2011.06.025.

    Article  CAS  PubMed  Google Scholar 

  9. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884–94. https://doi.org/10.1001/jama.2015.10081.

    Article  CAS  PubMed  Google Scholar 

  10. Filippatos G, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14. https://doi.org/10.1093/eurheartj/ehw132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–63. https://doi.org/10.1093/eurheartj/eht187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lentini S, Heinig R, Kimmeskamp-Kirschbaum N, Wensing G. Pharmacokinetics, safety and tolerability of the novel, selective mineralocorticoid receptor antagonist finerenone—results from first-in-man and relative bioavailability studies. Fundam Clin Pharmacol. 2016;30(2):172–84. https://doi.org/10.1111/fcp.12170.

    Article  CAS  PubMed  Google Scholar 

  13. Heinig R, Kimmeskamp-Kirschbaum N, Halabi A, Lentini S. Pharmacokinetics of the novel nonsteroidal mineralocorticoid receptor antagonist finerenone (BAY 94-8862) in individuals with renal impairment. Clin Pharmacol Drug Dev. 2016;5(6):488–501. https://doi.org/10.1002/cpdd.263.

    Article  CAS  PubMed  Google Scholar 

  14. Gerisch M, Heinig R, Engelen A, Lang D, Kolkhof P, Platzek J et al. Biotransformation of finerenone, a novel nonsteroidal mineralocorticoid receptor antagonist, in dogs, rats, and humans in vivo and in vitro. In preparation.

  15. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol. 2004;94(9):1140–6. https://doi.org/10.1016/j.amjcard.2004.07.080.

    Article  CAS  PubMed  Google Scholar 

  16. Yang QJ, Fan J, Chen S, Liu L, Sun H, Pang KS. Metabolite kinetics: the segregated flow model for intestinal and whole body physiologically based pharmacokinetic modeling to describe intestinal and hepatic glucuronidation of morphine in rats in vivo. Drug Metab Dispos. 2016;44(7):1123–38. https://doi.org/10.1124/dmd.116.069542.

    Article  CAS  PubMed  Google Scholar 

  17. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96. https://doi.org/10.2165/00003088-200746080-00005.

    Article  CAS  PubMed  Google Scholar 

  18. Loue C, Tod M. Reliability and extension of quantitative prediction of CYP3A4-mediated drug interactions based on clinical data. AAPS J. 2014;16(6):1309–20. https://doi.org/10.1208/s12248-014-9663-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58. https://doi.org/10.1124/dmd.110.032649.

    Article  CAS  PubMed  Google Scholar 

  20. Okudaira T, Kotegawa T, Imai H, Tsutsumi K, Nakano S, Ohashi K. Effect of the treatment period with erythromycin on cytochrome P450 3A activity in humans. J Clin Pharmacol. 2007;47(7):871–6. https://doi.org/10.1177/0091270007302562.

    Article  CAS  PubMed  Google Scholar 

  21. Hla KK, Henry JA, Latham AN. Pharmacokinetics and pharmacodynamics of two formulations of verapamil. Br J Clin Pharmacol. 1987;24(5):661–4.

    Article  CAS  Google Scholar 

  22. Honkalammi J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses. Clin Pharmacol Ther. 2012;91(5):846–55. https://doi.org/10.1038/clpt.2011.313.

    Article  CAS  PubMed  Google Scholar 

  23. Honkalammi J, Niemi M, Neuvonen PJ, Backman JT. Mechanism-based inactivation of CYP2C8 by gemfibrozil occurs rapidly in humans. Clin Pharmacol Ther. 2011;89(4):579–86. https://doi.org/10.1038/clpt.2010.358.

    Article  CAS  PubMed  Google Scholar 

  24. Floyd JS, Kaspera R, Marciante KD, Weiss NS, Heckbert SR, Lumley T, et al. A screening study of drug-drug interactions in cerivastatin users: an adverse effect of clopidogrel. Clin Pharmacol Ther. 2012;91(5):896–904. https://doi.org/10.1038/clpt.2011.295.

    Article  CAS  PubMed  Google Scholar 

  25. Walsky RL, Gaman EA, Obach RS. Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol. 2005;45(1):68–78. https://doi.org/10.1177/0091270004270642.

    Article  CAS  PubMed  Google Scholar 

  26. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6. https://doi.org/10.1124/dmd.105.008672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the investigators responsible for the different studies: Dr. Michael Leidig (CRS Mönchengladbach) for his key role in the absolute bioavailability study, Dr. Angela Kentrat (ClinPharmCologne), Manuela Casjens (CRS Berlin) and Dr. Sybille Baumann (CRS Mannheim) for their valuable contributions to the drug–drug interaction in vivo studies with erythromycin, verapamil and gemfibrozil, respectively. Dr. Gabriele Rohde of Bayer AG (Wuppertal, Germany) was responsible for bioanalyses. Medical writing assistance, funded by Bayer AG, was provided by Dr. Nicolas Bertheleme of Oxford PharmaGenesis, Oxford, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Heinig.

Ethics declarations

Funding

Research was funded by the sponsor, Bayer AG. Bayer AG agreed to the publication of the present data.

Conflict of interest

RH, MG, AE and JN are employees of Bayer AG. SL is an employee of Chrestos Concept GmbH & Co. KG, which received funding for this analysis from Bayer AG. In addition, RH, MG, AE and JN have stock in Bayer AG, but are not paid in stock or stock options.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all participants before study commencement.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinig, R., Gerisch, M., Engelen, A. et al. Pharmacokinetics of the Novel, Selective, Non-steroidal Mineralocorticoid Receptor Antagonist Finerenone in Healthy Volunteers: Results from an Absolute Bioavailability Study and Drug–Drug Interaction Studies In Vitro and In Vivo. Eur J Drug Metab Pharmacokinet 43, 715–727 (2018). https://doi.org/10.1007/s13318-018-0483-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0483-9

Navigation