Vancomycin Dosing and Monitoring: Critical Evaluation of the Current Practice

  • Fawzy Elbarbry
Current opinion


After more than six decades of its use as the mainstay antibiotic for the treatment of multidrug-resistant Gram-positive bacterial infections, dosing and monitoring of vancomycin therapy have not been optimized. The current vancomycin therapeutic guidelines recommend empiric doses of 15–20 mg/kg administered by intermittent infusion every 8–12 h in patients with normal kidney function. Additionally, the guidelines recommend trough concentration of 15–20 mg/L as a therapeutic goal for adult patients with severe infections. This review critically discusses the current guidelines considering the basic pharmacokinetics and pharmacodynamics of vancomycin and the recent published reports from clinical studies. More in-depth discussion will be focused on (1) providing evidence of advantages of administering vancomycin by continuous infusion compared to intermittent infusion; (2) revising the current practice of trough-only monitoring versus the area under concentration–time curve (AUC); and (3) assessing the current practice of weight-based dosing versus AUC-based dosing. Using the gathered information presented in this paper, two user-friendly and scientifically based dosing strategies are proposed to improve the efficiency of vancomycin dosing while avoiding the risk of nephrotoxicity and minimizing the cost of therapeutic drug monitoring.



This work was supported in part by the Faculty Development Grant from Pacific University, Oregon.

Compliance with Ethical Standards

Conflict of interest

The author declares no conflict of interest.


  1. 1.
    Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am. 2003;17(3):479–501.CrossRefGoogle Scholar
  4. 4.
    Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43(13):925–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Jeffres MN, Isakow W, Doherty JA, McKinnon PS, Ritchie DJ, Micek ST, et al. Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest. 2006;130(4):947–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Verrall AJ, Llorin R, Tam VH, Lye DC, Sulaiman Z, Zhong L, et al. Efficacy of continuous infusion of vancomycin for the outpatient treatment of methicillin-resistant Staphylococcus aureus infections. J Antimicrob Chemother. 2012;67(12):2970–3.CrossRefPubMedGoogle Scholar
  7. 7.
    Vuagnat A, Stern R, Lotthe A, Schuhmacher H, Duong M, Hoffmeyer P, et al. High dose vancomycin for osteomyelitis: continuous vs. intermittent infusion. J Clin Pharm Ther. 2004;29(4):351–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Wysocki M, Delatour F, Faurisson F, Rauss A, Pean Y, Misset B, et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother. 2001;45(9):2460–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Davis SL, Scheetz MH, Bosso JA, Goff DA, Rybak MJ. Adherence to the 2009 consensus guidelines for vancomycin dosing and monitoring practices: a cross-sectional survey of US hospitals. Pharmacotherapy. 2013;33(12):1256–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Morrison AP, Melanson SE, Carty MG, Bates DW, Szumita PM, Tanasijevic MJ. What proportion of vancomycin trough levels are drawn too early? Frequency and impact on clinical actions. Am J Clin Pathol. 2012;137(3):472–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother. 2014;58(1):309–16.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42(Suppl 1):S35–9.CrossRefPubMedGoogle Scholar
  13. 13.
    van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–44.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Farber BF, Moellering RC Jr. Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob Agents Chemother. 1983;23(1):138–41.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    DiMondi VP, Rafferty K. Review of continuous-infusion vancomycin. Ann Pharmacother. 2013;47(2):219–27.CrossRefPubMedGoogle Scholar
  16. 16.
    Hanrahan T, Whitehouse T, Lipman J, Roberts JA. Vancomycin-associated nephrotoxicity: a meta-analysis of administration by continuous versus intermittent infusion. Int J Antimicrob Agents. 2015;46(3):249–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Hao JJ, Chen H, Zhou JX. Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;47(1):28–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Saugel B, Nowack MC, Hapfelmeier A, Umgelter A, Schultheiss C, Thies P, et al. Continuous intravenous administration of vancomycin in medical intensive care unit patients. J Crit Care. 2013;28(1):9–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67(1):17–24.CrossRefPubMedGoogle Scholar
  20. 20.
    James JK, Palmer SM, Levine DP, Rybak MJ. Comparison of conventional dosing versus continuous-infusion vancomycin therapy for patients with suspected or documented Gram-positive infections. Antimicrob Agents Chemother. 1996;40(3):696–700.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP Database. Clin Ther. 2012;34(1):149–57.CrossRefPubMedGoogle Scholar
  22. 22.
    Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Kullar R, Davis SL, Taylor TN, Kaye KS, Rybak MJ. Effects of targeting higher vancomycin trough levels on clinical outcomes and costs in a matched patient cohort. Pharmacotherapy. 2012;32(3):195–201.CrossRefPubMedGoogle Scholar
  24. 24.
    Waineo MF, Kuhn TC, Brown DL. The pharmacokinetic/pharmacodynamic rationale for administering vancomycin via continuous infusion. J Clin Pharm Ther. 2015;40(3):259–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Karam CM, McKinnon PS, Neuhauser MM, Rybak MJ. Outcome assessment of minimizing vancomycin monitoring and dosing adjustments. Pharmacotherapy. 1999;19(3):257–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Raverdy V, Ampe E, Hecq JD, Tulkens PM. Stability and compatibility of vancomycin for administration by continuous infusion. J Antimicrob Chemother. 2013;68(5):1179–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Das VG, Stewart KR, Nohria S. Stability of vancomycin hydrochloride in 5% dextrose and 0.9% sodium chloride injections. Am J Hosp Pharm. 1986;43(7):1729–31.Google Scholar
  28. 28.
    Trissel LA. Handbook on injectable drugs. 16th ed. Bethesda: American Society of Health-System Pharmacists; 2011.Google Scholar
  29. 29.
    Leung E, Venkatesan N, Ly SC, Scheetz MH. Physical compatibility of vancomycin and piperacillin sodium-tazobactam at concentrations typically used during prolonged infusions. Am J Health Syst Pharm. 2013;70(13):1163–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can’t get there from here. Clin Infect Dis. 2011;52(8):969–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Bel KA, Bourguignon L, Marcos M, Ducher M, Goutelle S. Is trough concentration of vancomycin predictive of the area under the curve? A clinical study in elderly patients. Ther Drug Monit. 2017;39(1):83–7.CrossRefGoogle Scholar
  32. 32.
    Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev. 2014;77:50–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Murphy JE, Gillespie DE, Bateman CV. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. Am J Health Syst Pharm. 2006;63(23):2365–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Alvarez R, Lopez Cortes LE, Molina J, Cisneros JM, Pachon J. Optimizing the clinical use of vancomycin. Antimicrob Agents Chemother. 2016;60(5):2601–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reynolds DC, Waite LH, Alexander DP, DeRyke CA. Performance of a vancomycin dosage regimen developed for obese patients. Am J Health Syst Pharm. 2012;69(11):944–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Panday PN, Sturkenboom M. Continuous infusion of vancomycin less effective and safe than intermittent infusion, based on pharmacodynamic and pharmacokinetic principles. Clin Infect Dis. 2009;49(12):1964–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang G, Hindler JF, Ward KW, Bruckner DA. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol. 2006;44(11):3883–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Brown DL, Lalla CD, Masselink AJ. AUC versus peak-trough dosing of vancomycin: applying new pharmacokinetic paradigms to an old drug. Ther Drug Monit. 2013;35(4):443–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Jeurissen A, Sluyts I, Rutsaert R. A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents. 2011;37(1):75–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Ingram PR, Lye DC, Fisher DA, Goh WP, Tam VH. Nephrotoxicity of continuous versus intermittent infusion of vancomycin in outpatient parenteral antimicrobial therapy. Int J Antimicrob Agents. 2009;34(6):570–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet. 1986;11(4):257–82.CrossRefPubMedGoogle Scholar
  42. 42.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Pea F, Furlanut M, Negri C, Pavan F, Crapis M, Cristini F, et al. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2009;53(5):1863–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ampe E, Delaere B, Hecq JD, Tulkens PM, Glupczynski Y. Implementation of a protocol for administration of vancomycin by continuous infusion: pharmacokinetic, pharmacodynamic and toxicological aspects. Int J Antimicrob Agents. 2013;41(5):439–46.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of PharmacyPacific UniversityHillsboroUSA

Personalised recommendations