Abstract
Saffron as a medicinal plant has many therapeutic effects. Phytochemical studies have reported that saffron is composed of at least four active ingredients which include crocin, crocetin, picrocrocin and safranal. The carotenoids of saffron are sensitive to oxygen, light, heat and enzymatic oxidization. However, regulation of these factors is required for saffron quality. Some pharmacologic effects of saffron and its active compounds include cardioprotective, neuroprotective, memory enhancer, antidepressant and anxiolytic. Among more than 150 chemicals of saffron, the most biologically active components are two carotenoids including crocin and crocetin. Most of the pharmacokinetic studies are related to these compounds. The pharmacokinetic studies have shown that crocin is not available after oral administration in blood circulation. Crocin is converted to crocetin in intestine but after intravenous injection, the level of crocetin in plasma is low. Crocetin can distribute in different tissues because of weak interaction between crocetin and albumin. Also it can penetrate blood-brain barrier and reach CNS by passive transcellular diffusion; thus it can be effective in neurodegenerative disorders. The large portion of crocin is eliminated via feces.
Similar content being viewed by others
References
Hosseinzadeh H, Nassiri-Asl M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res. 2013;27(4):475–83.
Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65–80.
Li NG, Lin YW, Kwan Min ZD. Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A. 1999;849(2):349–55.
Caballero-Ortega H, Pereda-Miranda R, Riverón-Negrete L, Hernández JM, Medécigo-Ríos M, Castillo-Villanueva A. Chemical composition of saffron (Crocus sativus L.) from four countries. In: Fernández JA, Abdullaev FI (Eds.) Proceedings of the First International Symposium on Saffron Biology and Biotechnology, International Society for Horticultural Science, Leuven, 650, Acta Hort. 2004;321–326.
Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wünsch B, Hensel A. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma-1 receptors. Planta Med. 2008;74(7):764–72.
Hadizadeh F, Mahdavi M, Emami SA, Noorbakhsh, R. Khashayarmanesh, Z, Hasanzadeh, M, Asili, J. Evaluation of ISO method in saffron quantification. In: Koosheki, Nassiri, Ghorbani (Eds.) Proceedings of the second international Symposium on Saffron Biology and Technology, Acta Hort (ISHS). 2007;739:405–410.
Straubinger M, Bau B, Eckstein S, Fink M, Winterhalter P. Identification of novel glycosidic precursors in saffron. J Agric Food Chem. 1998;46(8):3238–43.
Rios J, Recio M, Giner R, Manez S. An update review of saffron and its active constituents. Phytother Res. 1996;10(3):189–93.
Rezaee R, Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci. 2013;16(1):12–26.
Giaccio M. Crocetin from saffron: an active component of an ancient spice. Crit Rev Food Sci Nut. 2004;44(3):155–72.
Hosseinzadeh H, Shamsaie F, Mehri S. Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L stigma and its bioactive constituents, crocin and safranal. Pharmacogn Mag. 2009;5(20):419–24.
Kanakis C, Tarantilis P, Tajimir-Riahi H, Polissiou M. Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. J Agric Food Chem. 2007;55(3):970–7.
Tseng T, Chu C, Huang J, Shiow S, Wang C. Crocetin protects against oxidative damage in rat primary hepatocytes. Cancer Lett. 1995;97(1):61–7.
Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med. 2013;79(6):447–51.
Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol. 2011;49(10):1039–45.
Hosseinzadeh H, Sadeghnia H. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci. 2005;8(3):394–9.
Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants. 2006;5(19):40–50.
Hosseinzadeh H, Karimi G, Niapoor M. Antidepressant effects of crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. J Med Plants. 2004;3(11):48–58.
Hosseinzadeh H, Motamedshariaty V, Hadizadeh F. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline. 2007;2:367–70.
Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU J Pharm Sci. 2014;22(1):16.
Hosseinzadeh H, Noraei N. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res. 2009;23(6):768–74.
Hosseinzadeh H, Ziaee T, Sadeghnia H. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine. 2008;15(6–7):491–5.
Premkumar K, Abraham S, Santhiya S, Gopinath P. Inhibition of genotoxicity by saffron (Crocus sativus L.) in mice. Drug Chem Toxicol. 2001;24(4):421–8.
Hosseinzadeh H, Sadeghnia H. Effect of safranal, a constituent of Crocus sativus (saffron), on methyl methanesulfonate (MMS)-induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (comet) assay. DNA Cell Biol. 2007;26(12):841–6.
Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia. 2006;77(6):446–8.
Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K. Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Inter. 2013;203(3):547–55.
Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci. 2013;16(1):56–63.
Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24(7):990–4.
Razavi M, Hosseinzadeh H, Abnous K, Motamedshariaty VS, Imenshahidi M. Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci. 2013;16(1):64–72.
Vahdati Hassani F, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol. 2017;107:395–405.
Khorasany AR, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci. 2016;19(5):455–69.
Amin B, Hosseini S, Hosseinzadeh H. Enhancement of antinociceptive effect by co-administration of amitriptyline and Crocus sativus in a rat model of neuropathic pain. Iran J Pharm Res. 2017;16(1):187–200.
Mehri S, Abnous K, Mousavi S, Shariaty V, Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol. 2012;32(2):227–35.
Hosseinzadeh H, Sadeghnia HR, Rahimi A. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic acid treatment in anesthetized rats. Planta Med. 2008;74(12):1441–5.
Sadeghnia HR, Cortez MA, Liu D, Hosseinzadeh H, Carter Snead O. Antiabsence effects of safranal in acute experimental seizure models: EEG and autoradiography. J Pharm Pharm Sci. 2008;11(3):1–14.
Kamyar M, Razavi BM, Vahdati Hasani F, Mehri S, Foroutanfar A, Hosseinzadeh H. Crocin prevents haloperidol-induced orofacial dyskinesia: possible an antioxidant mechanism. Iran J Basic Med Sci. 2016;19(10):1070–9.
Soeda S, Ochiai T, Paopong L, Tanaka H, Shoyama Y, Shimeno H. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Life Sci. 2001;69(24):2887–98.
Liakopoulou-Kyriakides M, Skubas A. Characterization of the platelet aggregation inducer and inhibitor isolated from Crocus sativus. Biochem Int. 1999;22(1):103–10.
Lee I, Lee J, Baek N, Kim D. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull. 2015;28(11):2106–10.
He S, Qian Z, Tang F, Wen N, Xu G, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005;77(8):907–21.
Zheng S, Qian Z, Sheng L, Wen N. Crocetin attenuates atherosclerosis in hyperlipidemic rabbits through inhibition of LDL oxidation. J Cardiovasc Pharmacol. 2006;47(1):70–6.
Kazi H, Qian Z. Crocetin reduces TNBS-induced experimental colitis in mice by downregulation of NFkB. Saudi J Gastroenterol. 2009;15(3):181–7.
Sheng L, Qian Z, Shi Y, Yang L, Xi L, Zhao B. Crocetin improves the insulin resistance induced by high-fat diet in rats. Br J Pharmacol. 2008;154(5):1016–24.
Boskabady M, Aslani M. Relaxant effect of Crocus sativus (saffron) on guinea pig tracheal chains and its possible mechanisms. J Pharm Pharmacol. 2006;58(10):1385–90.
Nemati H, Boskabady M, Ahmadzadef Vostakolaei H. Stimulatory effect of Crocus sativus (saffron) on b2-adrenoceptors of guinea pig tracheal chains. Phytomedicine. 2008;15(12):1038–45.
Boskabady M, Ghasemzadeh M. Inhibitory effect of safranal on histamine (H1) receptors of guinea pig tracheal chains. Fitoterapia. 2011;82:162–7.
Akhondzadeh S, Tahmacebi-Pour N, Noorbala AA, Amini H, Fallah-Pour H, Jamshidi AH, Khani M. Crocus sativus L. in the treatment of mild to moderate depression: a double-blind, randomized and placebo-controlled trial. Phytother Res. 2005;19:148–51.
Talaei A, Hassanpour Moghadam M, Sajadi Tabassi SA, Mohajeri SA. Crocin the main active saffron constituent as an adjunctive treatment in major depressive disorder. A randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord. 2015;174:51–3.
Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, Hejazi SSh, Yousefi MH, Alimardani R, Jamshidi A, Zare F, Moradi A. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther. 2010;35:581–8.
Chatterjee S, Datta RN, Bhattacharyya D, Bandopadhyay SK. Emollient and antipruritic effect of Itch cream in dermatological disorders: a randomized controlled trial. Indian J Pharmacol. 2005;37:253–4.
Shamsa A, Hosseinzadeh H, Molaei M, Shakeri M, Rajabi O. Evaluation of Crocus sativus L. (saffron) on male erectile dysfunction: a pilot study. Phytomedicine. 2009;16(8):690–3.
Agha-Hosseini M, Kashani L, Aleyaseen A, Ghoreishi A, Rahmanpour H, Zarrinara AR, Akhondzadeh S. Crocus sativus L. (saffron) in the treatment of premenstrual syndrome: a double-blind, randomized and placebo-controlled trial. BJOG. 2008;115:515–9.
Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. DARU. 2015;23:31.
Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric. 2017;97(6):1679–85.
Bostan HB, Mehri S, Hosseinzadeh H. Toxicology effects of saffron and its constituents: a review. Iran J Basic Med Sci. 2017;20(2):110–21.
Asai A, Nakano T, Takahashi M, Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem. 2005;53(18):7302–6.
Xi L, Qian Z, Du P, Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine. 2007;14(9):633–6.
Ahn-Jarvis JH, Clinton SK, Grainger EM, Riedl KM, Schwartz SJ, Lee ML, Cruz-Cano R, Young GS. Isoflavone pharmacokinetics and metabolism after consumption of a standardized soy and soy-almond bread in men with asymptomatic prostate cancer. Cancer Prev Res. 2015;8(11):1045–54.
Franke AA, Lai JF, Halm BM. Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake. Arch Biochem Biophys. 2014;559:24–8.
Zhang Y, Liu JX, Lin L, Li LQ. Pharmacokinetics of crocin-1 after oral administration in rats. Chin Pharm J. 2012;47(2):136–40.
Li XY, Feng WL, Zhu JB, Nima CR. Effect of Tibetan medicine Zuotai on in vivo pharmacokinetics of crocin-1 in rats. Chin Trad Herb Drugs. 2009;40:1425–8.
Christodoulou E, Kakazanis Z, Kostomitsopoulos N, Dokoumetzidis A, Valsami G. Pharmacokinetics of Crocus sativus L. aqueous extract after per os and intravenous administration to C57/BL6J mice. 24th annual meeting. 2015; Hersonissos.
Mohammadpour AH, Ramezani M, Tavakoli Anaraki N, Malaekeh-Nikouei B, Amel Farzad S, Hosseinzadeh H. Development and validation of HPLC method for determination of crocetin, a constituent of saffron, in human serum samples. Iran J Basic Med Sci. 2013;16(1):47–55.
Umigai N, Murakami K, Ulit M, Antonio L, Shirotori M, Morikawa H, Nakano T. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine. 2011;18(7):575–8.
Chryssanthi D, Lamari F, Georgakopoulos C, Cordopatis P. A new validated SPE-HPLC method for monitoring crocetin in human plasma–application after saffron tea consumption. J Pharm Biomed Anal. 2011;55(3):563–8.
Kostic D, White W, Olson J. Intestinal absorption, serum clearance, and interactions between lutein and beta-carotene when administered to human adults in separate or combined oral doses. Am J Clin Nutr. 1995;62(3):604–10.
Zhi J, Melia A, Koss-Twardy S, Arora S, Patel I. The effect of orlistat, an inhibitor of dietary fat absorption, on the pharmacokinetics of beta-carotene in healthy volunteers. J Clin Pharmacol. 1996;36(2):152–9.
Gustin D, Rodvold K, Sosman J, Diwadkar-Navsariwala V, Stacewicz-Sapuntzakis M, Viana M. Single-dose pharmacokinetic study of lycopene delivered in a well-defined food-based lycopene delivery system (tomato paste–oil mixture) in healthy adult male subjects. Cancer Epidemiol Biomark Prev. 2004;13(5):850–60.
Kyriakoudi A, O’Callaghan Y, Galvin K, Tsimidou M, O’Brien N. Cellular transport and bioactivity of a major saffron apocarotenoid, picrocrocin (4-(#-D-glucopyranosyloxy)-2,6,6-trimethyl–1–cyclohexane–1-carboxaldehyde). J Agric Food Chem. 2015;63(39):8662–8.
Parker R. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996;10(5):542–51.
Lautenschläger M, Sendker J, Hüwel S, Galla H, Brandt S, Düfer M. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine. 2015;22(1):36–44.
Miller TL, Willett SL, Moss ME, Miller J, Belinka BA. Binding of crocetin to plasma albumin. J Pharm Sci. 1982;71(2):173–7.
Jafarisani M, Bathaie SZ, Mousavi MF. Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. J Biomol Struct Dyn. 2017;8:1–10.
Zhang Y, Fei F, Zhen L, Zhu X, Wang J, Li S. Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. J Chromatog B Anal Technol Biomed Life Sci. 2017;1044:1–7.
Lautenschläger M, Lechtenberg M, Sendker J, Hensel A. Effective isolation protocol for secondary metabolites from Saffron: semi-preparative scale preparation of crocin-1 and trans-crocetin. Fitoterapia. 2014;92:290–5.
Martin G, Goh E, Neff A. Evaluation of the developmental toxicity of crocetin on Xenopus. Food Chem Toxicol. 2002;40(7):959–64.
Winterhalter P. Flavor chemistry of saffron. Carotenoid-derived aroma compounds: ACS symposium series. Washington: American Chemical Society; 2001. p. 16.
Souret F, Weathers P. Cultivation, in vitro culture, secondary metabolite production, and phytopharmacognosy of saffron (Crocus sativus L.). J Herbs Spices Med Plants. 1999;6(4):99–116.
Tsimidou M. Kinetic studies of saffron (Crocus sativus L.) quality deterioration. J Agric Food Chem. 1997;45(8):2890–8.
Alonso GL, Varon R, Salinas MR, Navarro F. Auto-oxidation of crocin and picrocrocin in saffron under different storage conditions. Boll Chim Farm. 1993;132(4):116–20.
Sanchez A, Carmona M, Jaren-Galan M, Miguez-Mosquera M, Alonso G. Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. J Agric Food Chem. 2011;59(1):249–55.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
There is no external source of funding for production of this manuscript.
Conflict of interest
The authors declare that there are no conflicts of interest.
Rights and permissions
About this article
Cite this article
Hosseini, A., Razavi, B.M. & Hosseinzadeh, H. Pharmacokinetic Properties of Saffron and its Active Components. Eur J Drug Metab Pharmacokinet 43, 383–390 (2018). https://doi.org/10.1007/s13318-017-0449-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13318-017-0449-3