Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics

  • Momir Mikov
  • Maja Đanić
  • Nebojša Pavlović
  • Bojan Stanimirov
  • Svetlana Goločorbin-Kon
  • Karmen Stankov
  • Hani Al-Salami
Review Article


A major advancement in therapy of type 1 diabetes mellitus (T1DM) is the discovery of new treatment which avoids and even replaces the absolute requirement for injected insulin. The need for multiple drug therapy of comorbidities associated with T1DM increases demand for developing novel therapeutic alternatives with new mechanisms of actions. Compared to other sulphonylurea drugs used in the treatment of type 2 diabetes mellitus, gliclazide exhibits a pleiotropic action outside pancreatic β cells, the so-called extrapancreatic effects, such as antiinflammatory and cellular protective effects, which might be beneficial in the treatment of T1DM. Results from in vivo experiments confirmed the positive effects of gliclazide in T1DM that are even more pronounced when combined with other hypoglycaemic agents such as probiotics and bile acids. Even though the exact mechanism of interaction at the molecular level is still unknown, there is a clear synergistic effect between gliclazide, bile acids and probiotics illustrated by the reduction of blood glucose levels and improvement of diabetic complications. Therefore, the manipulation of bile acid pool and intestinal microbiota composition in combination with old drug gliclazide could be a novel therapeutic approach for patients with T1DM.


Compliance with Ethical Standards

Conflict of Interest

None of the authors has any potential conflicts of interest related to this manuscript.


This research was supported by HORIZON 2020 MEDLEM Project No. 690876 and Project for Scientific and Technological Development of Vojvodina No. 114-451-2072-/2016-02.


  1. 1.
    Mittermayer F, Caveney E, Oliveira CD, Gourgiotis L, Puri M, Tai LJ, et al. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev. 2015;11(1):17–31.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sena CM, Bento CF, Pereira P, Seiça R. Diabetes mellitus: new challenges and innovative therapies. EPMA J. 2010;1(1):138–63.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Al-Salami H, Kansara H, King J, Morar B, Jayathilaka B, Fawcett P, et al. Bile acids: a bitter sweet remedy for diabetes. NZ Pharm J. 2007;27:17–20.Google Scholar
  4. 4.
    Mikov M, Al-Salami H, Golocorbin-Kon S. Potentials and limitations of bile acids and probiotics in diabetes mellitus. In: Liu C, editor. Type 1 Diabetes - Complications, Pathogenesis, and Alternative Treatments, 2011, InTech. Accessed 12 June 2017.
  5. 5.
    Mikov M, Fawcett JP, Kuhajda K, Kevresan S. Pharmacology of bile acids and their derivatives: absorption promoters and therapeutic agents. Eur J Drug Metab Pharmacokinet. 2006;31(3):237–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Mikov M, Fawcett JP. Chemistry, biosynthesis, analysis, chemical & metabolic transformations and pharmacology. Eur J Drug Metab Pharmacokinet. 2006;31(3):133–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int. 2014;56(3):336–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5(1):82–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084–94.PubMedCrossRefGoogle Scholar
  10. 10.
    McCall AL, Farhy LS. Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control. Minerva Endocrinol. 2013;38(2):145–63.PubMedPubMedCentralGoogle Scholar
  11. 11.
    King AJF. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877–94.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Mathieu C, Gillard P, Benhalima K. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat Rev Endocrinol. 2017;13(7);385–399. doi: 10.1038/nrendo.2017.39.
  13. 13.
    Soltesz G, Patterson CC, Dahlquist G. Worldwide childhood type 1 diabetes incidence–what can we learn from epidemiology? Pediatr Diabetes. 2007;8(Suppl 6):6–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruno G, Gruden G, Songini M. Incidence of type 1 diabetes in age groups above 15 years: facts, hypothesis and prospects for future epidemiologic research. Acta Diabetol. 2016;53(3):339–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, obesity and type 2 diabetes mellitus. Rev Endocr Metab Disord. 2015;16(1):55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hameed S, Ellard S, Woodhead HJ, Neville KA, Walker JL, Craig ME, et al. Persistently autoantibody negative (PAN) type 1 diabetes mellitus in children. Pediatr Diabetes. 2011;12(3 Pt 1):142–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Dabelea D, Pihoker C, Talton JW, D’Agostino RB Jr, Fujimoto W, Klingensmith GJ, et al. Etiological approach to characterization of diabetes type: the SEARCH for Diabetes in Youth Study. Diabetes Care. 2011;34(7):1628–33.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, et al. A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet. 2006;15(11):1793–800.PubMedCrossRefGoogle Scholar
  20. 20.
    Remedi MS, Kurata HT, Scott A, Wunderlich FT, Rother E, Kleinridders A, et al. Secondary consequences of beta cell inexcitability: identification and prevention in a murine model of K(ATP)-induced neonatal diabetes mellitus. Cell Metab. 2009;9(2):140–51.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Denton JS, Jacobson DA. Channeling dysglycemia: ion-channel variations perturbing glucose homeostasis. Trends Endocrinol Metab. 2012;23(1):41–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Remedi MS, Thomas M, Nichols CG, Marshall BA. Sulfonylurea challenge test in subjects diagnosed with type 1 diabetes mellitus. Pediatr diabetes. 2017. doi: 10.1111/pedi.12489.
  23. 23.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32(Suppl 1):S62–7.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27(4):269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud. 2012;9(1):6–22.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schernthaner G. Gliclazide modified release: a critical review of pharmacodynamic, metabolic, and vasoprotective effects. Metabolism. 2003;52(8 Suppl 1):29–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Seino S, Takahashi H, Takahashi T, Shibasaki T. Treating diabetes today: a matter of selectivity of sulphonylureas. Diabetes Obes Metab. 2012;14(Suppl 1):9–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Sarkar A, Tiwari A, Bhasin PS, Mitra M. Pharmacological and Pharmaceutical Profile of Gliclazide: a Review. J Appl Pharm Sci. 2011;1(9):11–9.Google Scholar
  29. 29.
    Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Campbell DB, Lavielle R, Nathan C. The mode of action and clinical pharmacology of gliclazide: a review. Diabetes Res Clin Pract. 1991;14:S21–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest. 2005;115(8):2047–58.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Sagen JV, Pearson ER, Johansen A, Spyer G, Sovik O, Pedersen O, et al. Preserved insulin response to tolbutamide in hepatocyte nuclear factor-1alpha mutation carriers. Diabet Med. 2005;22(4):406–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol. 1998;31(5):950–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51(3):S368.PubMedCrossRefGoogle Scholar
  36. 36.
    Simpson SH, Lee J, Choi S, Vandermeer B, Abdelmoneim AS, Featherstone TR. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015;3(1):43–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Singh AK, Singh R. Is gliclazide a sulfonylurea with difference? A review in 2016. Expert Rev Clin Pharmacol. 2016;9(6):839–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Bonner-Weir S, Sharma A. Are there pancreatic progenitor cells from which new islets form after birth? Nat Clin Pract Endocrinol Metab. 2006;2(5):240–1.PubMedCrossRefGoogle Scholar
  39. 39.
    Del Guerra S, D’Aleo V, Lupi R, Masini M, Bugliani M, Boggi U, et al. Effects of exposure of human islet beta-cells to normal and high glucose levels with or without gliclazide or glibenclamide. Diabetes Metab. 2009;35(4):293–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakano N, Miyazawa N, Sakurai T, Kizaki T, Kimoto K, Takahashi K, et al. Gliclazide inhibits proliferation but stimulates differentiation of white and brown adipocytes. J Biochem. 2007;142(5):639–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Del Guerra S, Grupillo M, Masini M, Lupi R, Bugliani M, Torri S, et al. Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose. Diabetes Metab Res Rev. 2007;23(3):234–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Szewczyk A. Intracellular targets for antidiabetic sulfonylureas and potassium channel openers. Biochem Pharmacol. 1997;54(9):961–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Beck-Nielsen H, Hother-Nielsen O, Pedersen O. Mechanism of action of sulphonylureas with special reference to the extrapancreatic effect: an overview. Diabet Med. 1988;5(7):613–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J. 2016;24(5):547–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5–18.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    West IC. Radicals and oxidative stress in diabetes. Diabet Med. 2000;17(3):171–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Jennings PE. Vascular benefits of gliclazide beyond glycemic control. Metab Clin Exp. 2000;49(10 Suppl 2):17–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Scott NA, Jennings PE, Brown J, Belch JJ. Gliclazide: a general free radical scavenger. Eur J Pharmacol. 1991;208(2):175–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Onozato ML, Tojo A, Goto A, Fujita T. Radical scavenging effect of gliclazide in diabetic rats fed with a high cholesterol diet. Kidney Int. 2004;65(3):951–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Desfaits AC, Serri O, Renier G. Gliclazide decreases cell-mediated low-density lipoprotein (LDL) oxidation and reduces monocyte adhesion to endothelial cells induced by oxidatively modified LDL. Metab Clin Exp. 1997;46(10):1150–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Stanimirov B, Stankov K, Mikov M. Pleiotropic functions of bile acids mediated by the farnesoid X receptor. Acta Gastroenterol Belg. 2012;75(4):389–98.PubMedGoogle Scholar
  53. 53.
    Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal. 2010;8:e0005. doi: 10.1621/nrs.08005.
  54. 54.
    Prawitt J. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep. 2011;11(3):160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care. 2009;32(Suppl 2):S237–45.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Woodhams L, Al-Salami H. The roles of bile acids and applications of microencapsulation technology in treating type 1 diabetes mellitus. Ther Deliv. 2017;8(6):401–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Al-Salami H, Butt G, Fawcett JP, Tucker IG, Golocorbin-Kon S, Mikov M. Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metab Pharmacokinet. 2008;33(2):101–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Miljkovic D, Kuhajda K, Mikov M, Kevresan S, Sabo A. Bile acids and their derivatives as glycoregulatory agents. Patents; 2000.Google Scholar
  59. 59.
    Stepanov V, Stankov K, Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res. 2013;33(4):213–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Stanimirov B, Stankov K, Mikov M. Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat Dis Int. 2015;14(1):18–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Staels B, Handelsman Y, Fonseca V. Bile acid sequestrants for lipid and glucose control. Curr Diab Rep. 2010;10(1):70–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Stojancevic M, Stankov K, Mikov M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. Can J Gastroenterol. 2012;26(9):631.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955–66.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis. 2010;28(1):220–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta. 2010;1802(3):363–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279(22):23158–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51(4):771–84.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10(8):488–98.PubMedCrossRefGoogle Scholar
  69. 69.
    Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart JC, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53(4):890–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Williams DL. Neural integration of satiation and food reward: role of GLP-1 and orexin pathways. Physiol Behav. 2014;136:194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Parker JA, McCullough KA, Field BC, Minnion JS, Martin NM, Ghatei MA, et al. Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int J Obes. 2013;37(10):1391–8.CrossRefGoogle Scholar
  74. 74.
    Duboc H, Tache Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46(4):302–12.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun. 2012;427(3):600–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 2009;30(11):570–80.PubMedCrossRefGoogle Scholar
  77. 77.
    Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–90.PubMedCrossRefGoogle Scholar
  78. 78.
    Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol. 2016;7:1081.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Stojancevic M, Bojic G, Salami HA, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr Issues Mol Biol. 2013;16(2):55–68.PubMedGoogle Scholar
  80. 80.
    Kosiewicz MM, Zirnheld AL, Alard P. Gut microbiota, immunity, and disease: a complex relationship. Front. Microbiol. 2011;2:180.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lerner A, Matthias T. GUT-the Trojan horse in remote organs’ autoimmunity. J Clin Cell Immunol. 2016;7(401):10–4172.Google Scholar
  82. 82.
    Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12(3):154–67.PubMedCrossRefGoogle Scholar
  83. 83.
    Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diab Rep. 2013;13(5):601–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Joint FAO/WHO Working Group. Guidelines for the evaluation of probiotics in food. London, Ontario, Canada; 2002. Accessed 20 June 2017.
  85. 85.
    Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011;6(3):209–40.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Stojančević M, Bojić G, Al-Salami H, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr Issues Mol Biol. 2013;4(16):2.Google Scholar
  87. 87.
    Kleerebezem M, Vaughan EE. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Physiol. 2009;63:269–90.Google Scholar
  88. 88.
    Soccol CR, Vandenberghe LPdS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, et al. The potential of probiotics: a review. Food Technol Biotechnol. 2010;48(4):413–34.Google Scholar
  89. 89.
    Fallucca F, Sciullo E, Maldonato A. Combined therapy with insulin and sulfonylurea for the treatment of new-onset insulin-dependent diabetes mellitus. Horm Metab Res. 1996;28(02):86–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Al-Salami H, Butt G, Tucker I, Mikov M. Influence of the semisynthetic bile acid MKC on the ileal permeation of gliclazide in vitro in healthy and diabetic rats treated with probiotics. Methods Find Exp Clin Pharmacol. 2008;30(2):107–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Al-Salami H, Butt G, Tucker I, Golocorbin-Kon S, Mikov M. Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet. 2012;37(2):99–108.PubMedCrossRefGoogle Scholar
  92. 92.
    Al-Salami H, Butt G, Tucker I, Skrbic R, Golocorbin-Kon S, Mikov M. Probiotic pre-treatment reduces gliclazide permeation (ex vivo) in healthy rats but increases it in diabetic rats to the level seen in untreated healthy rats. Arch Drug Inf. 2008;1(1):35–41.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lukivskaya O, Patsenker E, Buko VU. Protective effect of ursodeoxycholic acid on liver mitochondrial function in rats with alloxan-induced diabetes: link with oxidative stress. Life Sci. 2007;80(26):2397–402.PubMedCrossRefGoogle Scholar
  94. 94.
    Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, et al. Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 2010;59(8):1899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wu T, Bound MJ, Standfield SD, Jones KL, Horowitz M, Rayner CK. Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans. Int J Clin Endocrinol Metab. 2013;98(4):E718–22.CrossRefGoogle Scholar
  96. 96.
    Chen G, Yang L, Zhang H, Tucker IG, Fawcett JP. Effect of ketocholate derivatives on methotrexate uptake in Caco-2 cell monolayers. Int J Pharm. 2012;433(1):89–93.PubMedCrossRefGoogle Scholar
  97. 97.
    Mikov M, Boni NS, Al-Salami H, Kuhajda K, Kevresan S, Golocorbin-Kon S, et al. Bioavailability and hypoglycemic activity of the semisynthetic bile acid salt, sodium 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate, in healthy and diabetic rats. Eur J Drug Metab Pharmacokinet. 2007;32(1):7–12.PubMedCrossRefGoogle Scholar
  98. 98.
    Mikov M, Al-Salami H, Golocorbin-Kon S, Skrbic R, Raskovic A, Fawcett JP. The influence of 3alpha,7alpha-dihydroxy-12-keto-5beta-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes. Eur J Drug Metab Pharmacokinet. 2008;33(3):137–42.PubMedCrossRefGoogle Scholar
  99. 99.
    Mooranian A, Negrulj R, Chen-Tan N, Al-Sallami HS, Fang Z, Mukkur T, et al. Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study. Drug Des Devel Ther. 2014;8:1003–12.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Mooranian A, Negrulj R, Al-Sallami HS, Fang Z, Mikov M, Golocorbin-Kon S, et al. Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment. J Microencapsul. 2015;32(2):151–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, et al. An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations. Pharm Dev Technol. 2015;20(6):702–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Mathavan S, Chen-Tan N, Arfuso F, Al-Salami H. A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of type-1 diabetes. Drug Deliv. 2016;23(8):2869–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Golocorbin-Kon S, Calasan J, Milijasevic B, Vukmirovic S, Lalic-Popovic M, Mikov M et al. High-loading dose of microencapsulated gliclazide formulation exerted a hypoglycaemic effect on type 1 diabetic rats and incorporation of a primary deconjugated bile acid, diminished the hypoglycaemic antidiabetic effect. Eur J Drug Metab Pharmacokinet. 2017. doi: 10.1007/s13318-017-0415-0.
  104. 104.
    Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J of Nanomedicine. 2011;6:1155–66.CrossRefGoogle Scholar
  105. 105.
    Kuhajda K, Kevrešan S, Mikov M, Sabo A, Miljkovic D. 3α, 7α-dihydroxy-12-oxo-5β-cholanate as enhancer of insulin nasal absorption in rats. Arch Toxicol Kinet Xenobiot Metabol. 1997;5:359–61.Google Scholar
  106. 106.
    Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, et al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: the use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J Pharm Innov. 2014;9(2):150–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Djanic M, Pavlovic N, Stanimirov B, Stojancevic T, Golocorbin-Kon S, Bojic G, et al. Docking-based preliminary study on the interactions of bile acids with drugs at the transporter level in intestinal bacteria. Eur Rev Med Pharmacol Sci. 2016;20(3):553–60.PubMedGoogle Scholar
  108. 108.
    Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. Front Life Sci. 2013;7(3–4):112–22.CrossRefGoogle Scholar
  109. 109.
    Al-Salami H, Butt G, Tucker I, Mikov M. Influence of the semisynthetic bile acid (MKC) on the ileal permeation of gliclazide in healthy and diabetic rats. Pharmacol Rep. 2008;60(4):532.PubMedGoogle Scholar
  110. 110.
    Lalić-Popović M, Vasović V, Milijašević B, Goločorbin-Kon S, Al-Salami H, Mikov M. Deoxycholic acid as a modifier of the permeation of gliclazide through the blood brain barrier of a rat. J Diabetes Res. 2013;2013:598603. doi: 10.1155/2013/598603.
  111. 111.
    Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15(14):1677–89.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Klaassen CD, Cui JY. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos. 2015;43(10):1505–21.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yang L, Zhang H, Mikov M, Tucker IG. Physicochemical and biological characterization of monoketocholic acid, a novel permeability enhancer. Mol Pharm. 2009;6(2):448–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of MedicineUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Pharmacy, Faculty of MedicineUniversity of Novi SadNovi SadSerbia
  3. 3.Department of Biochemistry, Faculty of MedicineUniversity of Novi SadNovi SadSerbia
  4. 4.Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, School of PharmacyCurtin UniversityPerthAustralia

Personalised recommendations