Antimicrobial Resistance Fact Sheet. World Health Organization Website. http://www.who.int/mediacentre/factsheets/fs194/en/. Updated September 2016. Accessed 8 March 2017.
Antibiotic Resistance Solutions Initiative Providing Critical Support to Combat Antibiotic-Resistant Bacteria. Centers for Disease Control and Prevention Website. https://www.cdc.gov/drugresistance/solutions-initiative/index.html. Updated January 2017. Accessed 8 March 2016.
Vasoo S, Barreto JN, Tosh PK. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc. 2015;90(3):395–403.
Article
PubMed
Google Scholar
Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42(Suppl 2):S82–9. https://doi.org/10.1086/499406.
Article
PubMed
Google Scholar
Khan HA, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed. 2015;5(7):509–14. https://doi.org/10.1016/j.apjtb.2015.05.001.
Article
Google Scholar
Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5(1):4–11. https://doi.org/10.4161/viru.27372.
Article
PubMed
Google Scholar
Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301. https://doi.org/10.1017/ice.2016.174.
Article
PubMed
Google Scholar
Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44(10):1009–34. https://doi.org/10.2165/00003088-200544100-00002.
CAS
Article
PubMed
Google Scholar
Udy AA, Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R. Association between augmented renal clearance and clinical outcomes in patients receiving β-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomized, placebo-controlled, clinical trial. Int J Antimicrob Agents. 2017;49:624–30. https://doi.org/10.1016/j.ijantimicag.2016.12.022.
CAS
Article
PubMed
Google Scholar
Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10.
CAS
Article
PubMed
Google Scholar
Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289–300. https://doi.org/10.1038/nrmicro862.
CAS
Article
PubMed
Google Scholar
Roberts JA, Lipman J, Blot S, Rello J. Better outcomes through continuous infusion of time-dependent antibiotics to critically ill patients? Curr Opin Crit Care. 2008;14(4):390–6. https://doi.org/10.1097/MCC.0b013e3283021b3a.
Article
PubMed
Google Scholar
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.
CAS
Article
PubMed
Google Scholar
Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.
CAS
PubMed
Google Scholar
Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009;9:80.
Article
PubMed
PubMed Central
Google Scholar
Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2012;049(i05).
Hanes SD, Wood GC, Herring V, Croce MA, Fabian TC, Pritchard E, et al. Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg. 2000;179:436–40.
CAS
Article
PubMed
Google Scholar
Nicolau DP, Mcnabb J, Lacy MK, Quintiliani R, Nightingale CH. Continuous versus intermittent administration of ceftazidime in intensive care unit patients with nosocomial pneumonia. Int J Antimicrob Agents. 2001;17(6):497–504.
CAS
Article
PubMed
Google Scholar
Georges B, Conil JM, Cougot P, Decun JF, Archambaud M, Seguin T. Cefepime in critically ill patients: continuous infusion vs. an intermittent dosing regimen. Int J Clin Pharmacol Ther. 2005;43(8):360–9.
CAS
Article
PubMed
Google Scholar
Roberts JA, Boots R, Rickard CM, Thomas P, Quinn J, Roberts DM, Richards B, et al. Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother. 2007;59:285–91.
CAS
Article
PubMed
Google Scholar
Sakka SG, Glauner AK, Bulitta JB, Kinzig-Schippers Pfister W, Drusano GL, et al. Population pharmacokinetics and pharmacodynamics of continuous versus short-term infusion of imipenem-cilastatin in critically ill patients in a randomized, controlled trial. Antimicrob Agents Chemother. 2007;51(9):3304–10. https://doi.org/10.1128/AAC.01318-06.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chytra I, Stepan M, Benes J, Pelnar P, Zidkova A, Bergerova T, et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care. 2012;16(3):1–13. https://doi.org/10.1186/cc11405.
Article
Google Scholar
De Jongh R, Hens R, Basma V, Mouton JW, Tulkens PM, Carryn S. Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection. J Antimicrob Chemother. 2008;61:382–8. https://doi.org/10.1093/jac/dkm467.
Article
PubMed
Google Scholar
Rafati MR, Rouini MR, Mojtahedzadeh M, Najafi A, Tavakoli H, Gholami K, Fazeli MR. Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents. 2006;28(2):122–7. Epub 2006 Jul 3. doi:10.1016/j.ijantimicag.2006.02.020.
Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Piperacillin penetration into tissue of critically ill patients with sepsis—Bolus versus continuous administration? Crit Care Med. 2009;37(3):926–33. https://doi.org/10.1097/CCM.0b013e3181968e44.
Article
PubMed
Google Scholar
Roberts JA, Kirkpatrick CMJ, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents. 2010;35:156–63. https://doi.org/10.1016/j.ijantimicag.2009.10.008.
CAS
Article
PubMed
Google Scholar
Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis. 2013;56(2):236–44. https://doi.org/10.1093/cid/cis856.
CAS
Article
PubMed
Google Scholar
Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, et al. A multicenter randomized trial of continuous versus intermittent β-lactam infusion in severe sepsis. Am J Respir Crit Care Med. 2015;192(11):1298–305. https://doi.org/10.1164/rccm.201505-0857OC.
CAS
Article
PubMed
Google Scholar
Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-lactam infusion in severe sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42(10):1535–45. https://doi.org/10.1007/s00134-015-4188-0.
CAS
Article
PubMed
Google Scholar
Lorente L, Lorenzo L, Martína MM, Jiménez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharrnacother. 2006;40:219–23. https://doi.org/10.1345/aph.1G467.
CAS
Article
Google Scholar
Lorente L, Jiménez A, Palmero S, Jimenez JJ, Iribarren JL, Santana M, et al. Comparison of clinical cure rates in adults with ventilator-associated pneumonia treated with intravenous ceftazidime administered by continuous or intermittent infusion: a retrospective, nonrandomized, open-label, historical chart review. Clin Ther. 2007;29(11):2433–9. https://doi.org/10.1016/j.clinthera.2007.11.003.
CAS
Article
PubMed
Google Scholar
Lorente L, Jiménez A, Martína MM, Iribarrena JL, Jiméneza JJ, Moraa ML. Clinical cure of ventilator-associated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents. 2009;33:464–8. https://doi.org/10.1016/j.ijantimicag.2008.10.025.
CAS
Article
PubMed
Google Scholar
Gonçalves-pereira J, Oliveira BS, Janeiro S, Estilita J, Monteiro C, Salgueiro A, et al. Continuous infusion of piperacillin/tazobactam in septic critically ill patients—a multicenter propensity matched analysis. PLoS One. 2012;7(11):e49845. https://doi.org/10.1371/journal.pone.0049845.
Article
PubMed
PubMed Central
Google Scholar
Benko AS, Cappelletty DM, Kruse JA, Rybak MJ. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram negative infections. Antimicrob Agents Chemother. 1996;40(3):691–5.
CAS
PubMed
PubMed Central
Google Scholar
Cousson J, Floch T, Guillard T, Vernet V, Raclot P, Wolak-Thierry A, et al. Lung concentrations of ceftazidime administered by continuous versus intermittent infusion in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2015;59:1905–9. https://doi.org/10.1128/AAC.04232-14.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thalhammer F, Traunmüller F, El Menyawi I, Frass M, Hollenstein UM, Locker GJ, et al. Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother. 1999;43:523–7.
CAS
Article
PubMed
Google Scholar
Varghese JM, Roberts JA, Lipman J. Antimicrobial pharmacokinetic and pharmacodynamic issues in the critically ill with severe sepsis and septic shock. Crit Care Clin. 2011;27(1):19–34. https://doi.org/10.1016/j.ccc.2010.09.006.
CAS
Article
PubMed
Google Scholar
Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–9. https://doi.org/10.1001/jama.2009.1754.
CAS
Article
PubMed
Google Scholar
Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51. https://doi.org/10.1097/CCM.0b013e3181961bff.
CAS
Article
PubMed
Google Scholar
Bolt SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill. Adv Drug Deliv Rev. 2014;77:3–11. https://doi.org/10.1016/j.addr.2014.07.006.
Article
Google Scholar
Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013;17:1–9.
Article
Google Scholar
Brusselaers N, Vogelaers D, Blot S. The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care. 2011;47(1):1–7.
Google Scholar
Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus Intermittent β-lactam infusion in severe sepsis: a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681–91. https://doi.org/10.1164/rccm.201601-0024OC.
CAS
Article
PubMed
Google Scholar
Roger C, Cotta MO, Muller L, Wallis SC, Lipman J, Lefrant J-Y, Roberts JA. Impact of renal replacement modalities on clearance of piperacillin-tazobactam administered via continuous infusion in critically ill patients. Int J Antimicrob Agents. 2017;50(2):227–31. doi:10.1016/j.ijantimicag.2017.03.018.
Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, Lipman J. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents. 2010;36:332–9. https://doi.org/10.1016/j.ijantimicag.2010.06.008.
CAS
Article
PubMed
Google Scholar
Economou CJP, Wong G, McWhinney B, Ungerer J, Lipman J, Roberts JA. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. 2017;49:589–94. https://doi.org/10.1016/j.ijantimicag.2017.01.009.
CAS
Google Scholar
Taeb AM, Hooper MH, Marik PE. Sepsis: current definition, pathophysiology, diagnosis, and management. Nutr Clin Pract. 2017;32(3):296–308. https://doi.org/10.1177/0884533617695243.
CAS
Article
PubMed
Google Scholar
Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefits of continuous administration of β-lactam antibiotics. Crit Care Med. 2009;37(6):2071–8. https://doi.org/10.1097/CCM.0b013e3181a0054d.
CAS
Article
PubMed
Google Scholar
McNabb JJ, Nightingale CH, Quintiliani R, Nicolau DP. Cost-effectiveness of ceftazidime by continuous infusion versus intermittent infusion for nosocomial pneumonia. Pharmacotherapy. 2001;21(3):549–55.
CAS
Article
PubMed
Google Scholar
Florea NR, Kotapati S, Kuti JL, Geissler EC, Nightingale CH, Nicolau DP. Cost analysis of continuous versus intermittent infusion of piperacillin–tazobactam: a time–motion study. Am J Health Syst Pharm. 2003;60:2321–7.
PubMed
Google Scholar
Zosyn [package insert]. Philadelphia, PA: Wyeth Pharmaceuticals Inc.; 2005.
Timentin [package insert]. Research Triangle Park, NC: GlaxoSmithKline; 2007.
Maxipime [package insert]. Lake Forest, IL: Hospira, Inc.; 2012.
Fortaz [package insert]. Research Triangle Park, NC: GlaxoSmithKline; 2007.
Merrem I.V. [package insert]. Lake Forest, IL: Hospira, Inc.; 2013.
Primaxin I.V. [package insert]. Whitehouse Station, NJ: Merck & Co., Inc.; 2016.
Negaban [package insert]. Brussels, Belgium: Eumedica S.A.; 2011.
Rocephin [package insert]. South San Francisco, CA: Genentech USA, Inc.; 2015.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
Article
PubMed
PubMed Central
Google Scholar