Skip to main content
Log in

In Vitro Comparison of the Role of P-Glycoprotein and Breast Cancer Resistance Protein on Direct Oral Anticoagulants Disposition

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Pharmacokinetics of direct oral anticoagulants (DOACs) are influenced by ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP).

Objectives

To better understand the role of transporters in DOAC disposition, we evaluated and compared the permeabilities and transport properties of these drugs.

Methods

Bidirectional permeabilities of DOACs were investigated across Caco-2 cells monolayer. Transport assays were performed using different concentrations of DOAC and specific inhibitors of ABC transporters. Cell model functionality was evaluated by transport assay of two positive control substrates.

Results

The results of transport assays suggest a concentration-dependent efflux of apixaban, dabigatran etexilate and edoxaban, whereas the efflux transport of rivaroxaban did not seem to depend on concentration. Verapamil, a strong inhibitor of P-gp, decreased DOAC efflux in the Caco-2 cell model by 12–87%, depending on the drug tested. Ko143 reduced BCRP-mediated DOAC efflux in Caco-2 cells by 46–76%.

Conclusion

This study allowed identification of three different profiles of ABC carrier-mediated transport: predominantly P-gp-dependent transport (dabigatran), preferential BCRP-dependent transport (apixaban) and approximately equivalent P-gp and BCRP-mediated transport (edoxaban and rivaroxaban).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.

    Article  CAS  PubMed  Google Scholar 

  2. Kishimoto W, Ishiguro N, Ludwig-Schwellinger E, Ebner T, Schaefer O. In vitro predictability of drug-drug interaction likelihood of P-glycoprotein-mediated efflux of dabigatran etexilate based on [I]2/IC50 threshold. Drug Metab Dispos. 2013;42(2):257–63.

    Article  PubMed  Google Scholar 

  3. Zhang D, He K, Herbst JJ, Kolb J, Shou W, Wang L, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41(4):827–35.

    Article  CAS  PubMed  Google Scholar 

  4. Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug’s disposition. Drug Metab Dispos. 2014;42(4):520–8.

    Article  PubMed  Google Scholar 

  5. Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–70.

    Article  CAS  PubMed  Google Scholar 

  6. Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22(47):7340–58.

    Article  PubMed  Google Scholar 

  7. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 2005;7(1):E118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koshiba S, An R, Saito H, Wakabayashi K, Tamura A, Ishikawa T. Human ABC transporters ABCG2 (BCRP) and ABCG4. Xenobiotica. 2008;38(7–8):863–88.

    Article  CAS  PubMed  Google Scholar 

  9. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  PubMed  Google Scholar 

  10. Mendell J, Zahir H, Matsushima N, Noveck R, Lee F, Chen S, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13(5):331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mueck W, Schwers S, Stampfuss J. Rivaroxaban and other novel oral anticoagulants: pharmacokinetics in healthy subjects, specific patient populations and relevance of coagulation monitoring. Thromb J. 2013;11(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13–33.

    Article  CAS  PubMed  Google Scholar 

  13. Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica. 2008;38(7–8):1140–64.

    Article  CAS  PubMed  Google Scholar 

  14. Food and Drug Administration. Guidance for industry drug interaction studies. 2012. https://www.fda.gov/downloads/drugs/guidances/ucm292362.pdf. Assessed 2 Sept 2017.

  15. European Medicines Agency. Guideline on the investigation of drug interactions. 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Assessed 2 Sept 2017.

  16. Beéry E, Rajnai Z, Abonyi T, Makai I, Bánsághi S, Erdő F, et al. ABCG2 modulates chlorothiazide permeability in vitro—characterization of its interactions. Drug Metab Pharmacokinet. 2012;27(3):349–53.

    Article  PubMed  Google Scholar 

  17. Rautio J, Humphreys JE, Webster LO, Balakrishnan A, Keogh JP, Kunta JR, et al. In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos. 2006;34(5):786–92.

    Article  CAS  PubMed  Google Scholar 

  18. Giri N, Agarwal S, Shaik N, Pan G, Chen Y, Elmquist WF. Substrate-dependent breast cancer resistance Protein (Bcrp1/Abcg2)-mediated interactions: consideration of multiple binding sites in in vitro assay design. Drug Metab Dispos. 2009;37(3):560–70.

    Article  CAS  PubMed  Google Scholar 

  19. Allen JD, Jackson SC, Schinkel AH. A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance. Cancer Res. 2002;62(8):2294–9.

    CAS  PubMed  Google Scholar 

  20. Jungbauer L, Dobias C, Stöllberger C, Weidinger F. The frequency of prescription of P-glycoprotein-affecting drugs in atrial fibrillation. J Thromb Haemost. 2010;8(9):2069–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Delavenne.

Ethics declarations

Funding

No source of funding.

Conflict of interest

Sophie Hodin, Thierry Basset, Elodie Jacqueroux, Anthony Clotagatide, Olivier Delezay, Nathalie Perek, Patrick Mismetti and Xavier Delavenne have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodin, S., Basset, T., Jacqueroux, E. et al. In Vitro Comparison of the Role of P-Glycoprotein and Breast Cancer Resistance Protein on Direct Oral Anticoagulants Disposition. Eur J Drug Metab Pharmacokinet 43, 183–191 (2018). https://doi.org/10.1007/s13318-017-0434-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-017-0434-x

Navigation