Skip to main content
Log in

Mixed Micelles Loaded with Bile Salt: An Approach to Enhance Intestinal Transport of the BCS Class III Drug Cefotaxime in Rats

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Cefotaxime is a class III drug according to the Biopharmaceutical Classification System due to low intestinal permeability based on poor oral bioavailability. Bile salt compounds have been shown to be effective additive for drug permeation through several biological membranes. The main purpose of this study was to investigate the ability of a mixed micelles made of phosphatidylcholine, sodium deoxycholate, and loaded with a cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex to enhance the oral bioavailability of cefotaxime in rats.

Methods

Thin-film hydration method was used to prepare cefotaxime-loaded mixed micelles using different bile salt concentrations (0.87–25 mM of sodium deoxycholate). Overall, micelle sizes ranging from 86.9 to 155.6 nm were produced with negative zeta potential values from −15.9 to −19.5 mV and drug loading from 10.5 to 18.9 %. The oral bioavailability of cefotaxime in mixed micellar formulation was assessed and the pharmacokinetic parameters were compared with cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex and cefotaxime aqueous solution. 24 Male Wistar rats were randomly allocated into four groups (n = 6, per group) to receive the following: (1) a single intravenous dose of cefotaxime (25 mg/kg) in sterilized normal saline solution for injection; (2) a single oral dose of mixed micelles (100 mg/kg of cefotaxime) in phosphate buffered saline administered by oral gavage; (3) a single oral dose of cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (100 mg/kg of cefotaxime) in phosphate buffered saline administered by oral gavage; (4) a single oral dose of free cefotaxime (100 mg/kg) in aqueous solution administered by oral gavage. Blood samples were collected for up to 24 h and cefotaxime analyzed using a validated HPLC assay.

Results

Pharmacokinetic data showed that the oral bioavailability of cefotaxime in mixed micelles was found to be 4.91 % higher compared to the cefotaxime in aqueous solution (1.30 %). Maximum concentration (C max) of cefotaxime in mixed micellar formulation was higher (1.08 ± 0.1 µg/ml) compared to the cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (0.69 ± 0.1 µg/ml) and cefotaxime in aqueous solution (0.52 ± 0.1 µg/ml). Similarly, the mean values for area under the plasma concentration–time curve extrapolated to infinity (AUC0–∞) of cefotaxime in the mixed micellar formulation was higher (3.89 ± 0.9 μg·h/mL) compared to the cefotaxime-3α,7α-dihydroxy-12-keto-5β-cholanate complex (1.52 ± 0.2 μg·h/mL) and cefotaxime in aqueous solution (1.03 ± 0.4 μg·h/mL), respectively.

Conclusion

The mixed micellar formulation was able to increase the oral bioavailability of the BCS Class III drug cefotaxime up to fourfold by enhancing drug permeation through the mucosal membrane of the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  2. Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007;123(2):78–99.

    Article  CAS  PubMed  Google Scholar 

  3. Cheeke PR. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J Anim Sci. 2000;77:1–10.

    Article  Google Scholar 

  4. Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther. 1998;284(1):362–9.

    CAS  PubMed  Google Scholar 

  5. Arafat M. Approaches to achieve an oral controlled release drug delivery system using polymers: a recent review. Int J Pharm Pharm Sci. 2015;7(7):16–21.

    CAS  Google Scholar 

  6. Kakemi K, Sezaki H, Konishi R, Kimura T, Murakami M. Effect of bile salts on the gastrointestinal absorption of drugs I. Chem Pharm Bull (Tokyo). 1970;18(2):275–80.

    Article  CAS  Google Scholar 

  7. Admirand WH, Small DM. The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest. 1986;47(5):1043–52.

    Article  Google Scholar 

  8. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–73.

    Article  CAS  PubMed  Google Scholar 

  9. Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21):958–65.

    Article  CAS  PubMed  Google Scholar 

  10. Torchilin VP. Lipid-core micelles for targeted drug delivery. Curr Drug Del. 2005;2(4):319–27.

    Article  CAS  Google Scholar 

  11. Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem. 2009;57(19):9141–6.

    Article  CAS  PubMed  Google Scholar 

  12. Arafat M. Bilosomes as a Drug Delivery System. In: Thesis, Doctor of Philosophy, University of Otago. 2012. http://hdl.handle.net/10523/2157. Accessed 27 Sept 2016.

  13. Boyd BJ, Khoo SM, Whittaker DV, Davey G, Porter CJ. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm. 2007;340(1–2):52–60.

    Article  CAS  PubMed  Google Scholar 

  14. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  15. Small DM. Size and structure of bile salt micelles: Influence of structure, concentration, counterion concentration, pH, and temperature. Photochemistry and radiation chemistry, complementary methods for the study of electron transfer. In: James FW, Daniel GN, editors. Advances in chemistry series. Boston: Academic; 1968. p. 31–52.

    Google Scholar 

  16. Small DM, Penkett SA, Chapman D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim Biophys Acta. 1969;176(1):178–89.

    Article  CAS  PubMed  Google Scholar 

  17. Alkan-Onyuksel H, Ramakrishnan S, Chai HB, Pezzuto JM. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm Res. 1994;11(2):206–12.

    Article  CAS  PubMed  Google Scholar 

  18. Duan RL, Sun X, Liu J, Gong T, Zhang ZR. Mixed micelles loaded with silybin-polyene phosphatidylcholine complex improve drug solubility. Acta Pharmacol Sin. 2011;32(1):108–15.

    Article  CAS  PubMed  Google Scholar 

  19. Shozo M, Noriyuki M, Hitoshi S. Improvement of absolute bioavailability of normally poorly absorbed drugs: inducement of the intestinal absorption of streptomycin and gentamycin by lipid-bile salt mixed micelles in rat and rabbit. Int J Pharm. 1979;2(2):101–11.

    Article  Google Scholar 

  20. Hammad M, Müller B. Solubility and stability of tetrazepam in mixed micelles. Eur J Pharm Sci. 1998;7(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  21. Hammad M, Müller B. Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. Eur J Pharm Biopharm. 1998;46(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta M. Biopharmaceutics classification system (BCS): development, implementation, and growth. 1st ed. New York: Wiley; 2016.

    Google Scholar 

  23. Fabre H, Eddine NH, Berge G. Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin. J Pharm Sci. 1984;73(5):611–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hakim L, Bourne DW, Triggs EJ. High-performance liquid chromatographic assay of cefotaxime, desacetylcefotaxime and ceftriaxone in rat plasma. J Chromatogr. 1988;424:111–7.

    Article  CAS  PubMed  Google Scholar 

  25. Guerrini VH, Filippich L, English PB, Bourne DW. Pharmacokinetics of cefotaxime in sheep. Am J Vet Res. 1983;44(8):1488–91.

    CAS  PubMed  Google Scholar 

  26. Atef M, Ramadan A, Afifi NA, Youssef SA. Pharmacokinetic profile of cefotaxime in goats. Res Vet Sci. 1990;49(1):34–8.

    CAS  PubMed  Google Scholar 

  27. Sharma S, Srivastava A. Pharmacokinetics and dosage regimen of cefotaxime in cross-bred calves following single intramuscular administration. Vet Res Commun. 1994;18(4):313–8.

    Article  CAS  PubMed  Google Scholar 

  28. McElroy D, Ravis WR, Clark CH. Pharmacokinetics of cefotaxime in the domestic cat. Am J Vet Res. 1986;47(1):86–8.

    CAS  PubMed  Google Scholar 

  29. Guerrini VH, English PB, Filippich LJ, Schneider J, Bourne DW. Pharmacokinetics of cefotaxime in the dog. Vet Rec. 1986;119(4):81–3.

    Article  CAS  PubMed  Google Scholar 

  30. Kampf D, Borner K, Möller M, Kessel M. Kinetic interactions between azlocillin, cefotaxime, and cefotaxime metabolites in normal and impaired renal function. Clin Pharmacol Ther. 1984;35(2):214–20.

    Article  CAS  PubMed  Google Scholar 

  31. Fu KP, Aswapokee P, Ho I, Matthijssen C, Neu HC. Pharmacokinetics of cefotaxime. Antimicrob Agents Chemother. 1979;16(5):592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esmieu F, Guibert J, Rosenkilde HC, Ho I, Le-Go A. Pharmacokinetics of cefotaxime in normal human volunteers. J Antimicrob Chemother. 1980;6:83–92.

    Article  CAS  PubMed  Google Scholar 

  33. Ings RM, Fillastre JP, Godin M, Leroy A, Humbert G. The pharmacokinetics of cefotaxime and its metabolites in subjects with normal and impaired renal function. Rev Infect Dis. 1982;4:S379–91.

    Article  PubMed  Google Scholar 

  34. Patel KB, Nicolau DP, Nightingale CH, Quintiliani R. Pharmacokinetics of cefotaxime in healthy volunteers and patients. Diagn Microbiol Infect Dis. 1995;22(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  35. Ling SS, Yuen KH, Magosso E, Barker SA. Oral bioavailability enhancement of a hydrophilic drug delivered via folic acid-coupled liposomes in rats. J Pharm Pharmacol. 2009;61(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  36. Golocorbin-Kon S, Mikov M, Arafat M, et al. Cefotaxime pharmacokinetics after oral application in the form of 3α, 7α-dihydroxy-12-keto-5β-cholanate microvesicles in rat. Eur J Drug Metab Pharmacokinet. 2009;34(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma P, Varma MV, Chawla HP, Panchagnula R. In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Farmaco. 2005;60(11):874–83.

    Article  CAS  PubMed  Google Scholar 

  38. Arafat M, Golocorbin-Ko S, Mikov M. The measurement of cefotaxime sodium in rat plasma after oral administration: a sensitive HPLC-UV method. Int J Pharm Pharm Sci. 2015;7(4):343–6.

    CAS  Google Scholar 

  39. Ladbrooke B, Chapman D. Thermal analysis of lipids, proteins and biological membranes a review and summary of some recent studies. Chem Phys Lipids. 1969;3(4):304–56.

    Article  CAS  PubMed  Google Scholar 

  40. Chapman D, Urbina J, Keough K. Biomembrane phase transitions studies of lipid–water systems using differential scanning calorimetry. J Biol Chem. 1974;249(8):2512–21.

    CAS  PubMed  Google Scholar 

  41. Sharma P, Varma MV, Chawla HP, Panchagnula R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco. 2005;60(11):884–93.

    Article  CAS  PubMed  Google Scholar 

  42. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Europ J Pharm. Biopharm. 2000;50(1):161–77.

    Article  Google Scholar 

  43. Müller RH, Rühl D, Runge SA. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int J Pharm. 1996;144(1):115–21.

    Article  Google Scholar 

  44. Liu J, Gong T, Wang C, Zhang Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm. 2007;340(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  45. Carey MC, Smal DM. The characteristics of mixed micellar solutions with particular reference to bile. Am J Med. 1970;49(5):590–608.

    Article  CAS  PubMed  Google Scholar 

  46. Mazer NA, Mazer NA, Benedek GB, Carey MC. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry. 1980;19(4):601–15.

    Article  CAS  PubMed  Google Scholar 

  47. Poelma F, Tukker JJ, Crommelin DJA. The role of bile salts in the intestinal absorption of drugs Acta Pharmaceutica Technologica. 1990;36(2):43–52.

    CAS  Google Scholar 

  48. Dongowski G, Fritzsch B, Giessler J, Härtl A, Kuhlmann O, Neubert RH. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits. Eur J Pharm Biopharm. 2005;60(1):147–51.

    Article  CAS  PubMed  Google Scholar 

  49. Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm. 2006;307(1):77–82.

    Article  PubMed  Google Scholar 

  50. Mikov M, Fawcett JP. Bile acids. Eur J Drug Metab Pharmacokinet. 2006;31(3):133–4.

    Article  CAS  PubMed  Google Scholar 

  51. Alberts B, Bray D, Lewis J, Raff M, et al. Molecular biology of the cell. 3rd ed. USA: Garland Science; 1994.

    Google Scholar 

  52. Bretschneider B, Brandsch M, Neubert R. Intestinal transport of β-lactam antibiotics: analysis of the affinity at the H +/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res. 1999;16(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  53. Mikov M, Raskovic A, Jakovljevic E, Dudvarski D, Fawcett JP. Influence of the bile salt sodium 3α,7α dihydroxy-12-oxo-5 β-cholanate on ampicillin pharmacokinetics in rats. Asian J Drug Metab Pharmacokinet. 2005;5(3):197–200.

    Google Scholar 

  54. Bambeke F, Michot JM, Tulkens PM. Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother. 2003;51(5):1067–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosab Arafat.

Ethics declarations

Funding

No sources of funding were used to conduct this study.

Conflict of interest

MA, CK and MM declare that they have no conflicts of interest to disclose.

Ethical approval

All procedures used in the present study were conducted in accordance with the guidelines approved by the Medical Faculty Novi Sad Animal Ethics Committee, Serbia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arafat, M., Kirchhoefer, C. & Mikov, M. Mixed Micelles Loaded with Bile Salt: An Approach to Enhance Intestinal Transport of the BCS Class III Drug Cefotaxime in Rats. Eur J Drug Metab Pharmacokinet 42, 635–645 (2017). https://doi.org/10.1007/s13318-016-0375-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0375-9

Keywords

Navigation