Skip to main content
Log in

Identification of N-benzylacetamide as a major component of human plasmatic metabolic profiling of benznidazole

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Chagas disease is an endemic infection in Latin America with a high health impact. Caused by the parasite Trypanosoma cruzi, it has expanded to non-endemic regions such as North America and European countries via immigration of infected people. This infectious disease has been rising in the ranking of international health priorities due to the growing migration flows from endemic to non-endemic areas. Benznidazole (BZN), a nitroheterocyclic drug, is one of the two trypanocidal drugs currently in clinical use, associated with significant adverse drug reactions (ADRs). Mammalian metabolism of BNZ has been poorly studied, including the potential role of metabolites on both toxicity and anti-parasitic activity. High-resolution UPLC/MS/MS was used to analyze three plasma samples obtained from pediatric patients under BNZ treatment in steady state. Spectroscopic and structural criteria were applied to identify BNZ and accompanying substances from chromatographic signals. From all detected species, two can be undoubtedly associated with the BNZ and N-benzylacetamide molecules, the second one being a fragment of the parent drug (BZN). From the obtained results, two hypotheses could be formulated. The first one is to relate the presence of N-benzyl acetamide with the hepatic metabolism of BNZ. The second hypothesis has to do with the possible trypanocidal activity of this metabolite, as well as its role in the development of side effects, associated with the pharmacotherapy. Complementary studies should be carried out to determine the possible association of this metabolite with the BNZ treatment stages, patient’s clinical features, ADRs, and trypanocidal effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altcheh J, Moscatelli G, Moroni S, Garcia-Bournissen F, Freilij H (2011) Adverse events after the use of benznidazole in infants and children with Chagas disease. Pediatrics 127:212–218

    Article  Google Scholar 

  • Altcheh J, Moscatelli G, Mastrantonio G, Moroni S, Giglio N, Marson ME, Ballering G, García-Bournissen F (2014) Efficacy of benznidazole in pediatric Chagas disease despite lower plasma concentrations than reported in adults (unpublished data)

  • Aurousseau M (1960) Étude comparative de quelques propriétés pharmacodynamiques et physico-chimiques de deux dérivés thiophéniques le thénylacétamide et le thényluréthane du glycol et de leurs isostères benzéniques. Arch Int Pharmacodyn 127:220–247

    CAS  PubMed  Google Scholar 

  • Cançado JR (2002) Long term evaluation of etiological treatment of Chagas Disease with benznidazole. Rev Inst Med Trop Sao Paulo 44:29–37

    Article  PubMed  Google Scholar 

  • Castro JA, MontaltodeMecca M, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas´ disease (American trypanosomiasis). Hum Exp Tox 25:471–479

    Article  CAS  Google Scholar 

  • Di Girolamo C, Bodini C, Marta BL, Ciannameo A, Cacciatore F (2011) Chagas disease at the crossroad of international migration and public health policies: why a national screening might not be enough. Euro Surveill 16. pii:19965

  • Garcia-Bournissen F, Altcheh J, Della Védova CO, Giglio N, Mastrantonio G, Koren G (2009) Pediatric clinical pharmacology studies in Chagas disease: focus on Argentina. Paediatr Drugs 11:33–37

    Article  PubMed  Google Scholar 

  • Gilbert JR, Potter E, Stace AJ (1975) The mass fragmentation of N-benzylacetamide. Org Mass Spec 10:320

    Article  CAS  Google Scholar 

  • Hall BS, Wilkinson SR (2012) Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 56:115–123. doi:10.1128/AAC.05135-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118:250–267

    Article  CAS  PubMed  Google Scholar 

  • Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Lau AH, Lam NP, Piscitelli SC, Wilkes L, Danziger LH (1992) Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin Pharmacokinet 23:328–364

    Article  CAS  PubMed  Google Scholar 

  • Lee FY, Workman P (1984) Nitroimidazoles as modifiers of nitrosourea pharmacokinetics. Int J Radiat Oncol Biol Phys 10:1627–1630

    Article  CAS  PubMed  Google Scholar 

  • Lee FY, Workman P (1986) Altered pharmacokinetics in the mechanism of chemosensitization: effects of nitroimidazoles and other chemical modifiers on the pharmacokinetics, antitumour activity and acute toxicity of selected nitrogen mustards. Cancer Chemother Pharmacol 17:30–37

    Article  CAS  PubMed  Google Scholar 

  • Lee FY, Workman P, Cheeseman KH (1987) Misonidazole and benznidazole inhibit hydroxylation of CCNU by mouse liver microsomal cytochrome P-450 in vitro. Biochem Pharmacol 36:1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Marson ME, Dana DD, Altcheh J, García-Bournissen F, Mastrantonio G (2013) Development of UV/HPLC methods for quantitative analysis of benznidazole in human plasma and urine for application in pediatric clinical studies. J Clin Lab Anal 27:384–390

    Article  CAS  PubMed  Google Scholar 

  • Moreno SN, Docampo R, Mason RP et al (1982) Different behaviors of benznidazole as free radical generator with mammalian and Trypanosoma cruzi microsomal preparations. Arch Biochem Biophys 218:585–591

    Article  CAS  PubMed  Google Scholar 

  • Organización Panamericana de la Salud (2006) Estimación Cuantitativa de la enfermedad de Chagas en las Americas, Montevideo, Uruguay, OPS/HDM/CD/425

  • Panicucci R, McClelland RA (1989) 4,5-Dihydro-4,5-dihydroxyimidazoles as products of the reduction of 2-nitroimidazoles. HPLC assay and demonstration of equilibrium transfer of glyoxal to guanine. Can J Chem 67:2128–2135

    Article  CAS  Google Scholar 

  • Pinazo MJ, Guerrero L, Posada E, Rodríguez E, Soy D, Gascon J (2013) Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob Agents Chemother 57:390–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raaflaub J (1980) Multiple-dose kinetics of the tripanomicide benznidazole in man. Arzneimittelforschung 30:2192–2194

    CAS  PubMed  Google Scholar 

  • Raaflaub J, Ziegler WH (1979) Single-dose pharmacokinetics of the trypanomicide benznidazole in man. Arzneimittelforschung 29:1611–1614

    CAS  PubMed  Google Scholar 

  • Richle R (1973) Chemotherapy of experimental acute Chagas disease in mice: beneficial effects of Ro-7-1051 on parasitaemia and tissue parasitism. Prog Med 101:282

    Google Scholar 

  • Richle RW, Raaflaub J (1980) Difference of effective antitrypanosomal dosages of benznidazole in mice and man: chemotherapeutic and pharmacokinetic results. Acta Trop 37:257–261

    CAS  PubMed  Google Scholar 

  • Schmunis GA (2007) Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102:75–85

    Article  PubMed  Google Scholar 

  • Schwartz DE, Hofheinz W (1982) Metabolism of nitroimidazoles. In: Breccia et al. (eds) Nitroimidazoles. Chemistry, pharmacology and clinical application. Nato Advanced Study Institute Series, Series A: Life Sci, vol 42. p 189

  • Streiger M, del Barco M, Fabbro D, Arias E, Amicone N (2004) Longitudinal study and specific chemotherapy in children with chronic Chagas disease, residing in a low endemicity area of Argentina. Rev Soc Bras Med Trop 37:365–375

    Article  PubMed  Google Scholar 

  • Walton MI, Workman P (1987) Nitroimidazole bioreductive metabolism. Quantitation and characterization of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochem Pharmacol 36:887–896

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) Expert Committee on the Control of Chagas Disease & World Health Organization Control of Chagas disease, Geneva

  • Workman P, White RA, Walton MI, Owen LN, Twentyman PR (1984) Preclinical pharmacokinetics of benznidazole. Br J Cancer 50:291–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Workman P, Walton MI, Lee FY (1986) Benznidazole: nitroreduction and inhibition of cytochrome P-450 in chemosensitization of tumour response to cytotoxic drugs. Biochem Pharmacol 35:117–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. E. M. specially acknowledges “Salud Investiga” Program of National Health Authority for the provided scholarship. F. G-B. is a scientific member of CONICET. This work was supported by Fundación Bunge & Born Argentina, “Salud Investiga” Program of National Health Authority (República Argentina), Facultad de Ciencias Exactas (Universidad Nacional de La Plata, Argentina), and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Enrique Mastrantonio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marson, M.E., Altcheh, J., Moscatelli, G. et al. Identification of N-benzylacetamide as a major component of human plasmatic metabolic profiling of benznidazole. Eur J Drug Metab Pharmacokinet 40, 209–217 (2015). https://doi.org/10.1007/s13318-014-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-014-0195-8

Keywords

Navigation