Skip to main content
Log in

Functional characterization of cynomolgus monkey UDP-glucuronosyltransferase 1A9

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

UDP-glucuronosyltransferase 1A9 (UGT1A9) contributes to the glucuronidation of numerous drugs. Cynomolgus monkeys are regarded as experimental animals similar to humans in studies on safety evaluation and biotransformation for drug development. In this study, the similarities and differences in the enzymatic properties of UGT1A9 between humans and cynomolgus monkeys were precisely identified. UGT1A9 cDNAs of humans (humUGT1A9) and cynomolgus monkeys (monUGT1A9) were cloned, and the corresponding proteins were heterologously expressed in Sf9 cells. The enzymatic properties of UGT1A9s were characterized by kinetic analysis of propofol glucuronidation. The amino acid homology between humUGT1A9 and monUGT1A9 was 93.2 %. Propofol glucuronidation by recombinant humUGT1A9 and monUGT1A9 exhibited substrate inhibition and monophasic Michaelis–Menten kinetics, respectively. The K m, V max and CL int values of humUGT1A9 were 15.0 μM, 1.56 nmon/min/mg protein and 107 μL/min/mg protein, respectively. The K m value of monUGT1A9 was 8.8-fold higher than humUGT1A9, and the V max and CL int values of monUGT1A9 were 15 and 2 % of humUGT1A9, respectively. These findings suggest that the enzymatic properties of UGT1A9 are considerably different between humans and cynomolgus monkeys, although humUGT1A9 and monUGT1A9 were highly conserved at the amino acid level. The information on species differences in UGT1A9 function gained in this study should help with the in vivo extrapolation of drug metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert C, Vallée M, Beaudry G, Bélanger A, Hum DW (1999) The monkey and human uridine diphosphate-glucuronosyltransferase UGT1A9, expressed in steroid target tissues, are estrogen-conjugating enzymes. Endocrinology 140:3292–3302

    CAS  PubMed  Google Scholar 

  • Barbier O, Bélanger A (2003) The cynomolgus monkey (Macaca fascicularis) is the best animal model for the study of steroid glucuronidation. J Steroid Biochem Mol Biol 85:235–245

    Article  CAS  PubMed  Google Scholar 

  • Bernard O, Guillemette C (2004) The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 32:775–778

    Article  CAS  PubMed  Google Scholar 

  • Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol 400:104–116

    Article  CAS  PubMed  Google Scholar 

  • Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, Greenblatt DJ (2003) Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31:1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Dutton GJ (1980) Glucuronidation of drugs and other compounds. CRC Press, Boca Raton

    Google Scholar 

  • Fallon JK, Neubert H, Goosen TC, Smith PC (2013) Targeted precise quantification of 12 human recombinant uridine-diphosphate glucuronosyl transferase 1A and 2B isoforms using nano-ultra-high-performance liquid chromatography/tandem mass spectrometry with selected reaction monitoring. Drug Metab Dispos 41:2076–2080

    Article  CAS  PubMed  Google Scholar 

  • Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, Alton K, Patrick JE, Zbaida S (2004) Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos 32:267–271

    Article  CAS  PubMed  Google Scholar 

  • Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C (2004) Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14:501–515

    Article  CAS  PubMed  Google Scholar 

  • Guillemette C, Lévesque E, Harvey M, Bellemare J, Menard V (2010) UGT genomic diversity: beyond gene duplication. Drug Metab Rev 42:24–44

    Article  CAS  PubMed  Google Scholar 

  • Hanioka N, Takeda Y, Jinno H, Tanaka-Kagawa T, Naito S, Koeda A, Shimizu T, Nomura M, Narimatsu S (2006) Functional characterization of human and cynomolgus monkey UDP-glucuronosyltransferase 1A6 enzymes. Chem Biol Interact 164:136–145

    Article  CAS  PubMed  Google Scholar 

  • Hanioka N, Tanabe N, Jinno H, Tanaka-Kagawa T, Nagaoka K, Naito S, Koeda A, Narimatsu S (2010) Functional characterization of human and cynomolgus monkey UDP-glucuronosyltransferase 1A1 enzymes. Life Sci 87:261–268

    Article  CAS  PubMed  Google Scholar 

  • Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC (2012) Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 84:98–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jinno H, Saeki M, Saito Y, Tanaka-Kagawa T, Hanioka N, Sai K, Kaniwa N, Ando M, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Ozawa S, Sawada J (2003) Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 306:688–693

    Article  CAS  PubMed  Google Scholar 

  • Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A (2004) Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol 67:2093–2102

    Article  CAS  PubMed  Google Scholar 

  • Kerdpin O, Knights KM, Elliot DJ, Miners JO (2008) In vitro characterisation of human renal and hepatic frusemide glucuronidation and identification of the UDP-glucuronosyltransferase enzymes involved in this pathway. Biochem Pharmacol 76:249–257

    Article  CAS  PubMed  Google Scholar 

  • Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol Ther 106:97–132

    Article  CAS  PubMed  Google Scholar 

  • Köhle C, Bock KW (2009) Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochem Pharmacol 77:689–699

    Article  PubMed  Google Scholar 

  • Korprasertthaworn P, Rowland A, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO (2012) Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochem Pharmacol 84:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy S, Duan SX, Von Moltke LL, Greenblatt DJ, Court MH (2003) Validation of serotonin (5-hydroxytryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos 31:133–139

    Article  CAS  PubMed  Google Scholar 

  • Liang SC, Ge GB, Liu HX, Shang HT, Wei H, Fang ZZ, Zhu LL, Mao YX, Yang L (2011) Determination of propofol UDP-glucuronosyltransferase (UGT) activities in hepatic microsomes from different species by UFLC–ESI–MS. J Pharm Biomed Anal 54:236–241

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie PI, Gregory PA, Gardner-Stephen DA, Lewinsky RH, Jorgensen BR, Nishiyama T, Xie W, Radominska-Pandya A (2003) Regulation of UDP glucuronosyltransferase genes. Curr Drug Metab 4:249–257

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15:677–685

    Article  CAS  PubMed  Google Scholar 

  • Miners JO, Mackenzie PI, Knights KM (2010) The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug–drug interaction potential. Drug Metab Rev 42:196–208

    Article  CAS  PubMed  Google Scholar 

  • Miyake Y, Mayumi K, Jinno H, Tanaka-Kagawa T, Narimatsu S, Hanioka N (2013) cDNA cloning and functional analysis of minipig uridine diphosphate-glucuronosyltransferase 1A1. Biol Pharm Bull 36:452–461

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Nakajima M, Hatakeyama M, Fukami T, Yokoi T (2012) Preparation of a specific monoclonal antibody against human UDP-glucuronosyltransferase (UGT) 1A9 and evaluation of UGT1A9 protein levels in human tissues. Drug Metab Dispos 40:1620–1627

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Nakajin S (2009) Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos 37:32–40

    Article  CAS  PubMed  Google Scholar 

  • Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129:171–193

    Article  CAS  PubMed  Google Scholar 

  • Saeki M, Saito Y, Jinno H, Sai K, Komamura K, Ueno K, Kamakura S, Kitakaze M, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Ozawa S, Sawada J (2003) Three novel single nucleotide polymorphisms in UGT1A9. Drug Metab Pharmacokinet 18:146–149

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Matsumoto Y, Tatsuno M, Fukuoka M (2003) Glucuronidation of propofol and its analogs by human and rat liver microsomes. Biol Pharm Bull 26:216–219

    Article  CAS  PubMed  Google Scholar 

  • Soars MG, Ring BJ, Wrighton SA (2003) The effect of incubation conditions on the enzyme kinetics of UDP-glucuronosyltransferases. Drug Metab Dispos 31:762–767

    Article  CAS  PubMed  Google Scholar 

  • Tukey RH, Strassburg CP (2000) Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616

    Article  CAS  PubMed  Google Scholar 

  • Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO (2004) Human UDP-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413–423

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve L, Girard H, Fortier LC, Gagné JF, Guillemette C (2003) Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African–American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 307:117–128

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Tracy TS, Remmel RP (2011) Correlation between bilirubin glucuronidation and estradiol-3-glucuronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors. Drug Metab Dispos 39:322–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu L, Ge G, Liu Y, He G, Liang S, Fang Z, Dong P, Cao Y, Yang L (2012a) Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9. Xenobiotica 42:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Ge G, Zhang H, Liu H, He G, Liang S, Zhang Y, Fang Z, Dong P, Finel M, Yang L (2012b) Characterization of hepatic and intestinal glucuronidation of magnolol: application of the relative activity factor approach to decipher the contributions of multiple UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 40:529–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant (23590148).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobumitsu Hanioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, K., Mukai, M., Nagaoka, K. et al. Functional characterization of cynomolgus monkey UDP-glucuronosyltransferase 1A9. Eur J Drug Metab Pharmacokinet 39, 195–202 (2014). https://doi.org/10.1007/s13318-014-0177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-014-0177-x

Keywords

Navigation