A comparison of in vitro ADME properties and pharmacokinetics of azithromycin and selected 15-membered ring macrolides in rodents

Abstract

The purpose of this study was to evaluate the impact of structural modifications on the 15-membered macrolactone ring and/or substituents on the in vitro ADME properties and in vivo pharmacokinetic (PK) profile for selected derivatives in rodents in comparison to azithromycin. Azithromycin and seven selected 15-membered macrolide derivatives, modified either by removal of the sugar moieties, replacement of the amine with a lactam, or addition of lipophilic substituents, were screened in several in vitro ADME assays and in vivo PK studies in rodents. In vitro ADME profiling included assessment of passive permeability and P-gp substrate, metabolic stability in liver microsomes and hepatocytes, as well as CYP direct inhibition measurements. In vivo PK studies were performed in rats (Sprague–Dawley), mice (Balb/c), and P-gp wild-type and deficient mice (CF-1™). Different structural modifications on the azithromycin scaffold resulted in substantial changes in disposition kinetics and oral bioavailability in both rodent species. However, these differences in vivo cannot be predicted based on in vitro results since most of these molecules are classified in the same category. Therefore, in the case of 15-membered ring macrolides, the in vitro ADME screens presented here seem to have low predictive value for in vivo prediction, making their use as routine in vitro screens prior to PK assessments questionable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alihodzic S, Fajdetic A, Kobrehel G, Lazarevski G, Mutak S, Pavlovic D, Stimac V, Cipcic H, Kramaric M, Erakovic V, Hasenohrl A, Marsic N, Schonfeld W (2006) Synthesis and antibacterial activity of isomeric 15-membered azalides. J Antibiot 59:753–769

    CAS  PubMed  Article  Google Scholar 

  2. Amsden GW (1995) Macrolide versus azalides: a drug interaction update. Ann Pharmacother 29:906–917

    CAS  PubMed  Google Scholar 

  3. Amsden GW (2005) Anti-inflammatory effects of macrolides–an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 55:10–21

    CAS  PubMed  Article  Google Scholar 

  4. Balani SK, Miwa GT, Gan LS, Wu JT, Lee FW (2005) Strategy of utilizing in vitro and in vivo ADME tools for lead optimization and drug candidate selection. Curr Top Med Chem 5:1033–1038

    CAS  PubMed  Article  Google Scholar 

  5. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Bosnar M, Kelneric Z, Munic V, Erakovic V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin and cethromycin. Antimicrob Agents Chemother 49:2372–2377

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Culic O, Erakovic V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429:209–229

    CAS  PubMed  Article  Google Scholar 

  8. Di L, Kerns EH, Carter G (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194

    CAS  PubMed  Article  Google Scholar 

  9. Djokic S, Kobrehel G, Lopotar N, Kamenar B, Nagl A, Mrvos D (1988) Synthesis and structure elucidation of 10-Dihydro-10-deoxo-11-methyl-11-azaerythromycin A. J Chem Res S 152–153

  10. Ducharme J, Farinotti R (1996) Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 31:257–274

    CAS  PubMed  Article  Google Scholar 

  11. Dunn CJ, Barradell LB (1996) Azithromycin. A review of its properties and use as 3-day therapy in respiratory tract infections. Drugs 51:483–505

    CAS  PubMed  Article  Google Scholar 

  12. FDA Guidance for industry (2012) Drug interaction studies-study design, data analysis, implications for dosing, and labelling recommendations. www.fda.gov

  13. Fiese EF, Steffen SH (1990) Comparison of the acid stability of azithromycin and erythromycin A. J Antimicrob Chemother 25:39–47

    CAS  PubMed  Article  Google Scholar 

  14. Garver E, Hugger ED, Shearn SP, Rao A, Dawson PA, Davis CB, Han C (2008) Involvement of intestinal uptake transporters in the absorption of azithromycin and clarithromycin in the rat. Drug Metab Dispos 36:2492–2498

    CAS  PubMed  Article  Google Scholar 

  15. Giamarellos-Bourboulis EJ (2008) Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents 31:12–20

    CAS  PubMed  Article  Google Scholar 

  16. Gleeson MP (2008) Generation of a set of simple interpretable ADMET rules of thumb. J Med Chem 51:817–834

    CAS  PubMed  Article  Google Scholar 

  17. Hoepelman IM, Scheneider MM (1995) Azithromycin: the first of the tissue-selective azalides. Int J Antimicrob Agents 5:145–167

    CAS  PubMed  Article  Google Scholar 

  18. Jain R, Danziger LH (2004) The macrolide antibiotics: a pharmacokinetic and pharmacodynamic overview. Curr Pharm Des 10:3045–3053

    CAS  PubMed  Article  Google Scholar 

  19. Lalak NJ, Morris DL (1993) Azithromycin clinical pharmacokinetics. Clin Pharmacokinet 25:370–374

    CAS  PubMed  Article  Google Scholar 

  20. Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE (2000) Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res 17:1456–1460

    CAS  PubMed  Article  Google Scholar 

  21. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Article  Google Scholar 

  22. Lu C, Li P, Gallegos R, Uttamsingh V, Xia CQ, Miwa GT, Balani SK, Gan LS (2006) Comparison of intrinsic clearance in liver microsomes and heaptocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes. Drug Metab Dispos 34:1600–1605

    CAS  PubMed  Article  Google Scholar 

  23. Mahar Doan KM, Humpheys JE, Webster LO, Wring SA, Shampine LJ, Serabijt-Singjh CJ, Adkison KK, Polli JW (2002) Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 303:1029–1037

    PubMed  Article  Google Scholar 

  24. Nozinic D, Milic A, Mikac L, Ralic J, Padovan J, Antolovic R (2010) Assessment of macrolide transport using PAMPA, Caco-2 and MDCKII-hMDR1 assays. Croat Chem Acta 83:323–331

    CAS  Google Scholar 

  25. Pachot JI, Botham RP, Haegele KD, Hwang K (2003) Experimental estimation of the role of P-Glycoprotein in the pharmacokinetic behaviour of telithromycin, a novel ketolide, in comparison with roxithromycin and other macrolides using the Caco-2 cell model. J Pharm Pharm Sci 6:1–12

    CAS  PubMed  Google Scholar 

  26. Padovan J, Ralić J, Letfus V, Milic A, Bencetic Mihaljevic V (2012) Investigating the barriers to bioavailability of macrolide antibiotics in the rat. Eur J Drug Metab Pharmacokinet 37:163–171

    CAS  PubMed  Article  Google Scholar 

  27. Pal S (2006) A journey across the sequential development of macrolides and ketolides related to erythromycin. Tetrahedron 62:3171–3200

    CAS  Article  Google Scholar 

  28. Peric M, Fajdetic A, Rupcic R, Alihodzic S, Ziher D, Bukvic Krajacic M, Smith KS, Ivezić-Schönfeld Z, Padovan J, Landek G, Jelic D, Hutinec A, Mesic M, Ager A, Ellis WY, Milhous WK, Ohrt C, Spaventi R (2012) Antimalarial activity of 9a-N substituted 15-membered azalides with improved in vitro and in vivo activity over azithromycin. J Med Chem 55:1389–1401

    CAS  PubMed  Article  Google Scholar 

  29. Rubin BK, Henke MO (2004) Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 125:70S–78S

    CAS  PubMed  Article  Google Scholar 

  30. Shinkai M, Henke MO, Rubin BK (2008) Macrolide antibiotics as immunomodulatory medications: proposed mechanism of action. Pharmacol Ther 117:393–405

    CAS  PubMed  Article  Google Scholar 

  31. Stepanic V, Kostrun S, Malnar I, Hlevnjak M, Butkovic K, Caleta I, Duksi M, Kragol G, Makaruha-Stegic O, Mikac L, Ralic J, Tatic I, Tavcar B, Valko K, Zulfikari S, Munic V (2011) Modelling cellular pharmacokinetics of 14- and 15-membered macrolides with physicochemical properties. J Med Chem 54:719–733

    CAS  PubMed  Article  Google Scholar 

  32. Sugie M, Asakura E, Zhao YL, Torita S, Nadai M, Baba K, Kitaichi K, Takagi K, Takagi K, Hasegawa T (2004) Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother 48:809–814

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Thummel KE, Wilkinson GR (1998) In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38:389–430

    CAS  PubMed  Article  Google Scholar 

  34. Tsai WC, Standiford TJ (2004) Immunomodulatory effects of macrolides in the lung: lessons from in vitro and in vivo models. Curr Pharm Des 10:3081–3093

    CAS  PubMed  Article  Google Scholar 

  35. Von Rosensteil NA, Adam D (1995) Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf 13:105–122

    Article  Google Scholar 

  36. Zhang Y, Wang X, Lin X, Liu X, Tian B, Tang X (2010) High azithromycin loading powders for inhalation and their in vivo evaluation in rats. Int J Pharm 395:205–214

    CAS  PubMed  Article  Google Scholar 

  37. Zimmermann GS, Neurohr C, Villena-Hermoza H, Hatz R, Behr J (2009) Anti-inflammatory effects of antibacterials on human bronchial epithelial cells. Respir Res 10:89

    PubMed Central  PubMed  Article  Google Scholar 

  38. Zuckerman JM (2000) The newer macrolides: azithromycin and clarithromycin. Infect Dis Clin North Am 14:449–462

    CAS  PubMed  Article  Google Scholar 

  39. Zuckerman JM (2004) Macrolides and ketolides: azithromycin, clarithromycin, telithromycin. Infect Dis Clin North Am 18:621–649

    PubMed  Article  Google Scholar 

  40. Zuckerman JM, Qamar F, Bono BR (2009) Macrolides, ketolides and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 23:997–1026

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jasna Padovan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milić, A., Mihaljević, V.B., Ralić, J. et al. A comparison of in vitro ADME properties and pharmacokinetics of azithromycin and selected 15-membered ring macrolides in rodents. Eur J Drug Metab Pharmacokinet 39, 263–276 (2014). https://doi.org/10.1007/s13318-013-0155-8

Download citation

Keywords

  • Macrolide
  • Permeability
  • Metabolic Stability
  • Pharmacokinetics