Skip to main content
Log in

Metabolism of small antimicrobial β2,2-amino acid derivatives by murine liver microsomes

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

We have investigated the in vitro metabolism of three small antimicrobial β2,2-amino acid derivatives (M w < 500) that are highly potent against methicillin resistant Staphylococcus aureus, and are among the first compounds designed from small cationic antimicrobial peptides with potential for oral administration. The β2,2-amino acid derivatives are virtually completely resistant against degradation by proteases, and to further explore their drug potential, we have investigated the hepatic Phase I metabolism of this class of antimicrobial compounds. The β2,2-amino acid derivatives were incubated with murine liver microsomes and the metabolites analyzed semi-quantitatively by HPLC–MS and qualitatively by ultra performance liquid chromatography coupled to a tandem mass spectrometer which enabled identification of the metabolites by careful interpretation of the collision activated dissociation spectra. The study shows that sterically hindered β2,2-amino acid derivatives that otherwise are stable against proteolytic degradation underwent Phase I metabolism and were oxidized to a number of different metabolites depending on the structure of the β2,2-amino acid side-chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AMP:

Cationic antimicrobial peptide

BP:

Base peak

CAD:

Collision activated dissociation

CV:

Cone voltages

CYP450:

Cytochrome P450 enzyme

d P :

Particle diameter

ESI:

Electrospray ionization

HPLC:

High performance liquid chromatography

IS:

Internal standard

LoD:

Limit of detection

LoQ:

Limit of quantification

MIC:

Minimal inhibitory concentration

MNP:

Methylene naphthalene

MRSA:

Methicillin resistant Staphylococcus aureus

MRSE:

Methicillin resistant Staphylococcus epidermidis

MS:

Mass spectrometry

NADP:

Nicotinamide adenine dinucleotide phosphate

NL:

Neutral loss

Q-ToF:

Quadrupole time of flight

RBC:

Human erythrocytes

RP:

Reverse phase

SEM:

Standard error of the mean

SIR:

Single-ion recording

ToF:

Time of flight

t R :

Retention time

UPLC:

Ultra performance liquid chromatography

UV:

Ultra violet

VS:

Volume standard

References

  • Ackley DC, Rockich KT, Baker TR (2004) Metabolic stability assessed by liver microsomes and hepatocytes. In: Yan Z, Caldwell GW (eds) Optimization in drug discovery: in vitro methods. Humana Press, NJ, pp 151–162

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215

    Article  PubMed  CAS  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48(1):1–12

    Article  PubMed  Google Scholar 

  • Cho TM, Rose RL, Hodgson E (2006) In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes. Drug Metab Dispos 34(1):176–183

    Article  PubMed  CAS  Google Scholar 

  • Corey GR, Stryjewski ME, Weyenberg W, Yasothan U, Kirkpatrick P (2009) Telavancin. Nat Rev Drug Discov 8(12):929–930

    Article  PubMed  CAS  Google Scholar 

  • Gimenez D, Andreu C, del Olmo M-l, Varea T, Diaz D, Asensio G et al (2006) The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem 14(20):6971–6978

    Article  PubMed  CAS  Google Scholar 

  • Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51(15):4359–4369

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Alst T, Havelkova M, Strøm MB (2010) Antimicrobial activity of small β-peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides. J Med Chem 53(2):595–606

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Ausbacher D, Flaten GE, Havelkova M, Strøm MB (2011) Synthesis of cationic antimicrobial β2,2-amino acid derivatives with potential for oral administration. J Med Chem 54(3):858–868

    Article  PubMed  CAS  Google Scholar 

  • Haug BE, Skar ML, Svendsen JS (2001) Bulky aromatic amino acids increase the antibacterial activity of 15-residue bovine lactoferricin derivatives. J Pept Sci 7(8):425–432

    Article  PubMed  CAS  Google Scholar 

  • Haug BE, Stensen W, Stiberg T, Svendsen JS (2004) Bulky nonproteinogenic amino acids permit the design of very small and effective cationic antibacterial peptides. J Med Chem 47(17):4159–4162

    Article  PubMed  CAS  Google Scholar 

  • IDSA (2004) Bad bugs, no drugs. Infectious Diseases Society of America

  • Kirk KL (2006) Fluorine in medicinal chemistry: recent therapeutic applications of fluorinated small molecules. J Fluorine Chem 127(8):1013–1029

    Article  CAS  Google Scholar 

  • Li C, Haug T, Moe MK, Styrvold OB, Stensvag K (2010) Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin. Strongylocentrotus droebachiensi. Dev Comp Immunol 34(9):959–968

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(Suppl 1):i29–i36

    Article  PubMed  CAS  Google Scholar 

  • Mills RF, Adams SS, Cliffe EE, Dickinson W, Nicholson JS (1973) The metabolism of ibuprofen. Xenobiotica 3(9):589–598

    Article  PubMed  CAS  Google Scholar 

  • Moe MK, Strøm MB, Jensen E, Claeys M (2004) Negative electrospray ionization low-energy tandem mass spectrometry of hydroxylated fatty acids: a mechanistic study. Rapid Commun Mass Spectrom 18(15):1731–1740

    Article  PubMed  CAS  Google Scholar 

  • Neu HC (1992) The crisis in antibiotic resistance. Science 257(5073):1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Norrby SR, Nord CE, Finch R (2005) Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5(2):115–119

    PubMed  Google Scholar 

  • Opar A (2007) Bad bugs need more drugs. Nat Rev Drug Discov 6(12):943–944

    Article  CAS  Google Scholar 

  • Park K, kitteringham NR, O′Neill PM (2001) Metabolism of fluorine-containing drugs. Annu Rev Pharmacol 41:443–470

    Article  CAS  Google Scholar 

  • Paterson JW, Conolly ME, Dollery CT, Hayes A, Cooper RG (1970) The pharmacodynamics and metabolism of propranolol in man. Eur J Clin Pharmacol 2(3):127–133

    CAS  Google Scholar 

  • Peet NP (2010) Drug resistance: a growing problem. Drug Discov Today 15(15–16):583–586

    Article  PubMed  Google Scholar 

  • Samuelsen O, Haukland HH, Jenssen H, Kramer M, Sandvik K, Ulvatne H, Vorland LH (2005) Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. FEBS Lett 579(16):3421–3426

    Article  PubMed  CAS  Google Scholar 

  • Strøm MB, Haug BE, Skar ML, Stensen W, Stiberg T, Svendsen JS (2003) The pharmacophore of short cationic antibacterial peptides. J Med Chem 46(9):1567–1570

    Article  PubMed  Google Scholar 

  • Svenson J, Stensen W, Brandsdal B, Olav, Haug BE, Monrad J, Svendsen JS et al (2008) Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 47(12):3777–3788

    Article  PubMed  CAS  Google Scholar 

  • Tew GN, Clements D, Tang H, Arnt L, Scott RW (2006) Antimicrobial activity of an abiotic host defense peptide mimic. Biochim Biophys Acta-Biomemb 1758(9):1387–1392

    Article  CAS  Google Scholar 

  • Tew GN, Scott RW, Klein ML, DeGrado WF (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43(1):30–39

    Article  PubMed  CAS  Google Scholar 

  • Tindell GL, Walle T, Gaffney TE (1972) Rat liver microsomal metabolism of propranolol: identification of seven metabolites by gas chromatography-mass spectrometry. Life Sci 11((21, Part 2)):1029–1036

    Article  CAS  Google Scholar 

  • Tørfoss V, Ausbacher D, Cavalcanti-Jacobsen CD, Hansen T, Brandsdal BO, Havelkova M, Strøm MB (2012) Synthesis of anticancer heptapeptides containing a unique lipophilic beta(2,2) -amino acid building block. J Pept Sci. doi: 10.1002/psc.1434

  • Vasskog T, Berger U, Samuelsen PJ, Kallenborn R, Jensen E (2006) Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromso Norway. J Chromatogr A 1115(1–2):187–195

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jack Bruun for technical assistance with running the Q-ToF experiments as well as Dr. Espen Hansen for help with obtaining the HRMS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terkel Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T., Moe, M.K., Anderssen, T. et al. Metabolism of small antimicrobial β2,2-amino acid derivatives by murine liver microsomes. Eur J Drug Metab Pharmacokinet 37, 191–201 (2012). https://doi.org/10.1007/s13318-012-0086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-012-0086-9

Keywords

Navigation