Autoimmunity Highlights

, Volume 4, Issue 3, pp 69–80 | Cite as

Natural killer cells in patients with severe chronic fatigue syndrome

  • E. W. Brenu
  • S. L. Hardcastle
  • G. M. Atkinson
  • M. L. van Driel
  • S. Kreijkamp-Kaspers
  • K. J. Ashton
  • D. R. Staines
  • S. M. Marshall-Gradisnik
Review

Abstract

Maintenance of health and physiological homeostasis is a synergistic process involving tight regulation of proteins, transcription factors and other molecular processes. The immune system consists of innate and adaptive immune cells that are required to sustain immunity. The presence of pathogens and tumour cells activates innate immune cells, in particular Natural Killer (NK) cells. Stochastic expression of NK receptors activates either inhibitory or activating signals and results in cytokine production and activation of pathways that result in apoptosis of target cells. Thus, NK cells are a necessary component of the immunological process and aberrations in their functional processes, including equivocal levels of NK cells and cytotoxic activity pre-empts recurrent viral infections, autoimmune diseases and altered inflammatory responses. NK cells are implicated in a number of diseases including chronic fatigue syndrome (CFS). The purpose of this review is to highlight the different profiles of NK cells reported in CFS patients and to determine the extent of NK immune dysfunction in subtypes of CFS patients based on severity in symptoms.

Keywords

Chronic fatigue syndrome Natural killer cells Cytotoxicity Perforin Granzymes 

Supplementary material

13317_2013_51_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. 1.
    Galy A, Travis M, Cen D, Chen B (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3(4):459–473PubMedGoogle Scholar
  2. 2.
    Brennan FM, McInnes IB (2008) Evidence that cytokines play a role in rheumatoid arthritis. J Clin Investig 118(11):3537–3545. doi:10.1172/JCI36389PubMedPubMedCentralGoogle Scholar
  3. 3.
    Barnes PJ (2008) The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Investig 118(11):3546–3556. doi:10.1172/JCI36130PubMedPubMedCentralGoogle Scholar
  4. 4.
    Codarri L, Fontana A, Becher B (2010) Cytokine networks in multiple sclerosis: lost in translation. Curr Opin Neurol 23(3):205–211. doi:10.1097/WCO.0b013e3283391febPubMedGoogle Scholar
  5. 5.
    Steinman L (2008) Nuanced roles of cytokines in three major human brain disorders. J Clin Investig 118(11):3557–3563. doi:10.1172/JCI36532PubMedPubMedCentralGoogle Scholar
  6. 6.
    Miron N, Miron MM, Milea VG, Cristea V (2010) Proinflammatory cytokines: an insight into pancreatic oncogenesis. Roum Arch Microbiol Immunol 69(4):183–189PubMedGoogle Scholar
  7. 7.
    Grivennikov SI, Karin M (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 70(Suppl 1):i104–i108. doi:10.1136/ard.2010.140145PubMedGoogle Scholar
  8. 8.
    Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99(12):4283–4297. doi:10.1182/blood-2002-01-0099PubMedGoogle Scholar
  9. 9.
    Oppenheim J, Fujiwara H (1996) The role of cytokines in cancer. Cytokine Growth Factor Rev 7(3):279–288PubMedGoogle Scholar
  10. 10.
    Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10):3146–3151PubMedGoogle Scholar
  11. 11.
    Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469. doi:10.1182/blood-2007-09-077438PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251PubMedGoogle Scholar
  13. 13.
    Diaz-Pena R, Blanco-Gelaz MA, Lopez-Larrea C (2009) KIR genes and their role in spondyloarthropathies. Adv Exp Med Biol 649:286–299PubMedGoogle Scholar
  14. 14.
    Isakov N (1997) Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. J Leukoc Biol 61(1):6–16PubMedGoogle Scholar
  15. 15.
    Brumbaugh KM, Binstadt BA, Billadeau DD, Schoon RA, Dick CJ, Ten RM, Leibson PJ (1997) Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J Exp Med 186(12):1965–1974PubMedPubMedCentralGoogle Scholar
  16. 16.
    Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY (2000) Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1(5):419–425. doi:10.1038/80859PubMedGoogle Scholar
  17. 17.
    Jiang K, Zhong B, Gilvary DL, Corliss BC, Vivier E, Hong-Geller E, Wei S, Djeu JY (2002) Syk regulation of phosphoinositide 3-kinase-dependent NK cell function. J Immunol 168(7):3155–3164PubMedGoogle Scholar
  18. 18.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107(1):159–166. doi:10.1182/blood-2005-04-1351PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zompi S, Hamerman JA, Ogasawara K, Schweighoffer E, Tybulewicz VL, Di Santo JP, Lanier LL, Colucci F (2003) NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases. Nat Immunol 4(6):565–572. doi:10.1038/ni930PubMedGoogle Scholar
  20. 20.
    Raulet DH (2006) Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol 18(3):145–150. doi:10.1016/j.smim.2006.03.003PubMedGoogle Scholar
  21. 21.
    Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6(12):940–952. doi:10.1038/nri1983PubMedGoogle Scholar
  22. 22.
    Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15(2):251–262. doi:10.1038/sj.cdd.4402244PubMedGoogle Scholar
  23. 23.
    Kono K, Takahashi A, Ichihara F, Sugai H, Fujii H, Matsumoto Y (2002) Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer. Cancer Res 62(20):5813–5817PubMedGoogle Scholar
  24. 24.
    Watanabe M, Kono K, Kawaguchi Y, Mizukami Y, Mimura K, Maruyama T, Izawa S, Fujii H (2010) NK cell dysfunction with down-regulated CD16 and up-regulated CD56 molecules in patients with esophageal squamous cell carcinoma. Dis Esophagus 23(8):675–681PubMedGoogle Scholar
  25. 25.
    Stratov I, Chung A, Kent SJ (2008) Robust NK cell-mediated human immunodeficiency virus (HIV)-specific antibody-dependent responses in HIV-infected subjects. J Virol 82(11):5450–5459PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chung AW, Isitman G, Navis M, Kramski M, Center RJ, Kent SJ, Stratov I (2011) Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure. Proc Natl Acad Sci USA 108(18):7505–7510PubMedPubMedCentralGoogle Scholar
  27. 27.
    Triulzi C, Vertuani S, Curcio C, Antognoli A, Seibt J, Akusjarvi G, Wei WZ, Cavallo F, Kiessling R (2010) Antibody-dependent natural killer cell-mediated cytotoxicity engendered by a kinase-inactive human HER2 adenovirus-based vaccination mediates resistance to breast tumors. Cancer Res 70(19):7431–7441. doi:10.1158/0008-5472.CAN-10-0493PubMedGoogle Scholar
  28. 28.
    Wallin RP, Screpanti V, Michaelsson J, Grandien A, Ljunggren HG (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33(10):2727–2735. doi:10.1002/eji.200324070PubMedGoogle Scholar
  29. 29.
    Ochi M, Ohdan H, Mitsuta H, Onoe T, Tokita D, Hara H, Ishiyama K, Zhou W, Tanaka Y, Asahara T (2004) Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39(5):1321–1331. doi:10.1002/hep.20204PubMedGoogle Scholar
  30. 30.
    Screpanti V, Wallin RP, Grandien A, Ljunggren HG (2005) Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42(4):495–499. doi:10.1016/j.molimm.2004.07.033PubMedGoogle Scholar
  31. 31.
    Brenu EW, van Driel ML, Staines DR, Ashton KJ, Hardcastle SL, Keane J, Tajouri L, Peterson D, Ramos SB, Marshall-Gradisnik SM (2012) Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med 10:88. doi:10.1186/1479-5876-10-88PubMedPubMedCentralGoogle Scholar
  32. 32.
    Brenu EW, van Driel ML, Staines DR, Ashton KJ, Ramos SB, Keane J, Klimas NG, Marshall-Gradisnik SM (2011) Immunological abnormalities as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med 9:81. doi:10.1186/1479-5876-9-81PubMedPubMedCentralGoogle Scholar
  33. 33.
    Fletcher MA, Zeng XR, Maher K, Levis S, Hurwitz B, Antoni M, Broderick G, Klimas NG (2010) Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidase IV/CD26. PLoS ONE 5(5):e10817. doi:10.1371/journal.pone.0010817PubMedPubMedCentralGoogle Scholar
  34. 34.
    Brenu EW, Staines DR, Baskurt OK, Ashton KJ, Ramos SB, Christy RM, Marshall-Gradisnik SM (2010) Immune and hemorheological changes in chronic fatigue syndrome. J Transl Med 8:1. doi:10.1186/1479-5876-8-1PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mihaylova I, DeRuyter M, Rummens JL, Bosmans E, Maes M (2007) Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells. Neuro Endocrinol Lett 28(4):477–483PubMedGoogle Scholar
  36. 36.
    Siegel SD, Antoni MH, Fletcher MA, Maher K, Segota MC, Klimas N (2006) Impaired natural immunity, cognitive dysfunction, and physical symptoms in patients with chronic fatigue syndrome: preliminary evidence for a subgroup? J Psychosom Res 60(6):559–566. doi:10.1016/j.jpsychores.2006.03.001PubMedGoogle Scholar
  37. 37.
    Maher KJ, Klimas NG, Fletcher MA (2005) Chronic fatigue syndrome is associated with diminished intracellular perforin. Clin Exp Immunol 142(3):505–511. doi:10.1111/j.1365-2249.2005.02935.xPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bansal AS, Bradley AS, Bishop KN, Kiani-Alikhan S, Ford B (2012) Chronic fatigue syndrome, the immune system and viral infection. Brain Behav Immun 26(1):24–31. doi:10.1016/j.bbi.2011.06.016PubMedGoogle Scholar
  39. 39.
    Lieberman J, Fan Z (2003) Nuclear war: the granzyme A-bomb. Curr Opin Immunol 15(5):553–559PubMedGoogle Scholar
  40. 40.
    Ashton-Rickardt PG (2005) The granule pathway of programmed cell death. Crit Rev Immunol 25(3):161–182. doi:2a1e865d14be9dc2,1831b39d0d3647ea [pii]PubMedGoogle Scholar
  41. 41.
    Bovenschen N, Quadir R, van den Berg AL, Brenkman AB, Vandenberghe I, Devreese B, Joore J, Kummer JA (2009) Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A. Journal Biol Chem 284(6):3504–3512. doi:10.1074/jbc.M806716200Google Scholar
  42. 42.
    Sutton VR, Wowk ME, Cancilla M, Trapani JA (2003) Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity 18(3):319–329. doi:S1074761303000505 [pii]PubMedGoogle Scholar
  43. 43.
    Heibein JA, Goping IS, Barry M, Pinkoski MJ, Shore GC, Green DR, Bleackley RC (2000) Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med 192(10):1391–1402PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3(5):361–370. doi:10.1038/nri1083PubMedGoogle Scholar
  45. 45.
    Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJ, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA (2009) The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30(5):684–695. doi:10.1016/j.immuni.2009.03.016PubMedGoogle Scholar
  46. 46.
    Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468(7322):447–451. doi:10.1038/nature09518PubMedGoogle Scholar
  47. 47.
    Cleare AJ (2003) The neuroendocrinology of chronic fatigue syndrome. Endocr Rev 24(2):236–252PubMedGoogle Scholar
  48. 48.
    Di Giorgio A, Hudson M, Jerjes W, Cleare AJ (2005) 24-hour pituitary and adrenal hormone profiles in chronic fatigue syndrome. Psychosom Med 67(3):433–440. doi:10.1097/01.psy.0000161206.55324.8aPubMedGoogle Scholar
  49. 49.
    Fulle S, Belia S, Vecchiet J, Morabito C, Vecchiet L, Fano G (2003) Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. Neuromuscul Disord NMD 13(6):479–484PubMedGoogle Scholar
  50. 50.
    Goertzel BN, Pennachin C, de Souza Coelho L, Gurbaxani B, Maloney EM, Jones JF (2006) Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Pharmacogenomics 7(3):475–483. doi:10.2217/14622416.7.3.475PubMedGoogle Scholar
  51. 51.
    Klimas NG, Koneru AO (2007) Chronic fatigue syndrome: inflammation, immune function, and neuroendocrine interactions. Curr Rheumatol Rep 9(6):482–487PubMedGoogle Scholar
  52. 52.
    Lange G, DeLuca J, Maldjian JA, Lee H, Tiersky LA, Natelson BH (1999) Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. J Neurol Sci 171(1):3–7PubMedGoogle Scholar
  53. 53.
    Maes M, Mihaylova I, De Ruyter M (2006) Lower serum zinc in chronic fatigue syndrome (CFS): relationships to immune dysfunctions and relevance for the oxidative stress status in CFS. J Affect Disord 90(2–3):141–147. doi:10.1016/j.jad.2005.11.002PubMedGoogle Scholar
  54. 54.
    Maes M, Mihaylova I, Leunis JC (2006) Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett 27(5):615–621PubMedGoogle Scholar
  55. 55.
    Wilson A, Hickie I, Hadzi-Pavlovic D, Wakefield D, Parker G, Straus SE, Dale J, McCluskey D, Hinds G, Brickman A, Goldenberg D, Demitrack M, Blakely T, Wessely S, Sharpe M, Lloyd A (2001) What is chronic fatigue syndrome? Heterogeneity within an international multicentre study. Aust NZ J Psychiatry 35(4):520–527Google Scholar
  56. 56.
    Shepherd C (1992) Chronic fatigue syndrome: a joint paediatric-psychiatric approach. Arch Dis Child 67(11):1410PubMedPubMedCentralGoogle Scholar
  57. 57.
    Nijhof SL, Maijer K, Bleijenberg G, Uiterwaal CS, Kimpen JL, van de Putte EM (2011) Adolescent chronic fatigue syndrome: prevalence, incidence, and morbidity. Pediatrics 127(5):e1169–e1175. doi:10.1542/peds.2010-1147PubMedGoogle Scholar
  58. 58.
    Capelli E, Zola R, Lorusso L, Venturini L, Sardi F, Ricevuti G (2010) Chronic fatigue syndrome/myalgic encephalomyelitis: an update. Int J Immunopathol Pharmacol 23(4):981–989PubMedGoogle Scholar
  59. 59.
    Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles ACP, Speight N, Vallings R, Bateman L, Baumgarten-Austrheim B, Bell DS, Carlo-Stella N, Chia J, Darragh A, Jo D, Lewis D, Light AR, Marshall-Gradisbik S, Mena I, Mikovits JA, Miwa K, Murovska M, Pall ML, Stevens S (2011) Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med 270(4):327–338. doi:10.1111/j.1365 2796.2011.02428.xGoogle Scholar
  60. 60.
    Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 121(12):953–959PubMedGoogle Scholar
  61. 61.
    Ogawa M, Nishiura T, Yoshimura M, Horikawa Y, Yoshida H, Okajima Y, Matsumura I, Ishikawa J, Nakao H, Tomiyama Y, Kanayama Y, Kanakura Y, Matsuzawa Y (1998) Decreased nitric oxide-mediated natural killer cell activation in chronic fatigue syndrome. Eur J Clin Invest 28(11):937–943PubMedGoogle Scholar
  62. 62.
    Whiteside TL, Friberg D (1998) Natural killer cells and natural killer cell activity in chronic fatigue syndrome. Am J Med 105(3A):27S–34SPubMedGoogle Scholar
  63. 63.
    Levine PH, Whiteside TL, Friberg D, Bryant J, Colclough G, Herberman RB (1998) Dysfunction of natural killer activity in a family with chronic fatigue syndrome. Clin Immunol Immunopathol 88(1):96–104PubMedGoogle Scholar
  64. 64.
    Ojo-Amaize EA, Conley EJ, Peter JB (1994) Decreased natural killer cell activity is associated with severity of chronic fatigue immune dysfunction syndrome. Clin Infect Dis 18(Suppl 1):S157–S159PubMedGoogle Scholar
  65. 65.
    Pasi A, Bozzini S, Carlo-Stella N, Martinetti M, Bombardieri S, De Silvestri A, Salvaneschi L, Cuccia M (2011) Excess of activating killer cell immunoglobulinlike receptors and lack of HLA-Bw4 ligands: a twoedged weapon in chronic fatigue syndrome. Mol Med Rep 4(3):535–540. doi:10.3892/mmr.2011.447PubMedGoogle Scholar
  66. 66.
    Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J, Wilson M, O’Brien SJ, Carrington M (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31(4):429–434. doi:10.1038/ng934PubMedGoogle Scholar
  67. 67.
    Jennes W, Verheyden S, Demanet C, Adje-Toure CA, Vuylsteke B, Nkengasong JN, Kestens L (2006) Cutting edge: resistance to HIV-1 infection among African female sex workers is associated with inhibitory KIR in the absence of their HLA ligands. J Immunol 177(10):6588–6592PubMedGoogle Scholar
  68. 68.
    Uhrberg M (2005) The KIR gene family: life in the fast lane of evolution. Eur J Immunol 35(1):10–15. doi:10.1002/eji.200425743PubMedGoogle Scholar
  69. 69.
    Klimas NG, Salvato FR, Morgan R, Fletcher MA (1990) Immunologic abnormalities in chronic fatigue syndrome. J Clin Microbiol 28(6):1403–1410PubMedPubMedCentralGoogle Scholar
  70. 70.
    Tirelli U, Marotta G, Improta S, Pinto A (1994) Immunological abnormalities in patients with chronic fatigue syndrome. Scand J Immunol 40(6):601–608PubMedGoogle Scholar
  71. 71.
    Thoren FB, Romero AI, Hermodsson S, Hellstrand K (2007) The CD16-/CD56bright subset of NK cells is resistant to oxidant-induced cell death. J Immunol 179(2):781–785PubMedGoogle Scholar
  72. 72.
    Harlin H, Hanson M, Johansson CC, Sakurai D, Poschke I, Norell H, Malmberg KJ, Kiessling R (2007) The CD16-CD56(bright) NK cell subset is resistant to reactive oxygen species produced by activated granulocytes and has higher antioxidative capacity than the CD16 + CD56(dim) subset. J Immunol 179(7):4513–4519PubMedGoogle Scholar
  73. 73.
    Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5(12):1260–1265. doi:10.1038/ni1138PubMedGoogle Scholar
  74. 74.
    Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L, Butcher EC (2001) Unique subpopulations of CD56 + NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166(11):6477–6482PubMedGoogle Scholar
  75. 75.
    Robinson E, Keystone EC, Schall TJ, Gillett N, Fish EN (1995) Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol 101(3):398–407PubMedPubMedCentralGoogle Scholar
  76. 76.
    Dalbeth N, Gundle R, Davies RJ, Lee YC, McMichael AJ, Callan MF (2004) CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol 173(10):6418–6426PubMedGoogle Scholar
  77. 77.
    Wulff S, Pries R, Borngen K, Trenkle T, Wollenberg B (2009) Decreased levels of circulating regulatory NK cells in patients with head and neck cancer throughout all tumor stages. Anticancer Res 29(8):3053–3057PubMedGoogle Scholar
  78. 78.
    Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, O’Shea MA, Kinter A, Kovacs C, Moretta A, Fauci AS (2005) Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA 102(8):2886–2891. doi:10.1073/pnas.0409872102PubMedPubMedCentralGoogle Scholar
  79. 79.
    Robertson MJ, Schacterle RS, Mackin GA, Wilson SN, Bloomingdale KL, Ritz J, Komaroff AL (2005) Lymphocyte subset differences in patients with chronic fatigue syndrome, multiple sclerosis and major depression. Clin Exp Immunol 141(2):326–332. doi:10.1111/j.1365-2249.2005.02833.xPubMedPubMedCentralGoogle Scholar
  80. 80.
    See DM, Cimoch P, Chou S, Chang J, Tilles J (1998) The in vitro immunomodulatory effects of glyconutrients on peripheral blood mononuclear cells of patients with chronic fatigue syndrome. Integr Physiol Behav Sci 33(3):280–287PubMedGoogle Scholar
  81. 81.
    Mawle AC, Nisenbaum R, Dobbins JG, Gary HE Jr, Stewart JA, Reyes M, Steele L, Schmid DS, Reeves WC (1997) Immune responses associated with chronic fatigue syndrome: a case-control study. J Infect Dis 175(1):136–141PubMedGoogle Scholar
  82. 82.
    Masuda A, Nozoe SI, Matsuyama T, Tanaka H (1994) Psychobehavioral and immunological characteristics of adult people with chronic fatigue and patients with chronic fatigue syndrome. Psychosom Med 56(6):512–518PubMedGoogle Scholar
  83. 83.
    Barker E, Fujimura SF, Fadem MB, Landay AL, Levy JA (1994) Immunologic abnormalities associated with chronic fatigue syndrome. Clin Infect Dis Off Publ Infect Dis Soc Am 18(Suppl 1):S136–S141Google Scholar
  84. 84.
    Bolitho P, Voskoboinik I, Trapani JA, Smyth MJ (2007) Apoptosis induced by the lymphocyte effector molecule perforin. Curr Opin Immunol 19(3):339–347. doi:10.1016/j.coi.2007.04.007PubMedGoogle Scholar
  85. 85.
    Saiki T, Kawai T, Morita K, Ohta M, Saito T, Rokutan K, Ban N (2008) Identification of marker genes for differential diagnosis of chronic fatigue syndrome. Mol Med 14(9–10):599–607. doi:10.2119/2007-00059.SaikiPubMedPubMedCentralGoogle Scholar
  86. 86.
    Clark WR (1994) Immunology. The hole truth about perforin. Nature 369(6475):16–17. doi:10.1038/369016a0PubMedGoogle Scholar
  87. 87.
    Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG, Christensen JL, Huang MT, Young JD, Ahmed R, Clark WR (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91(23):10854–10858PubMedPubMedCentralGoogle Scholar
  88. 88.
    Freud AG, Caligiuri MA (2006) Human natural killer cell development. Immunol Rev 214:56–72. doi:10.1111/j.1600-065X.2006.00451.xPubMedGoogle Scholar
  89. 89.
    Salcedo TW, Azzoni L, Wolf SF, Perussia B (1993) Modulation of perforin and granzyme messenger RNA expression in human natural killer cells. J Immunol 151(5):2511–2520PubMedGoogle Scholar
  90. 90.
    Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172(4):2048–2058PubMedGoogle Scholar
  91. 91.
    Fletcher MA, Zeng XR, Barnes Z, Levis S, Klimas NG (2009) Plasma cytokines in women with chronic fatigue syndrome. J Transl Med 7:96. doi:10.1186/1479-5876-7-96PubMedPubMedCentralGoogle Scholar
  92. 92.
    Broderick G, Katz BZ, Fernandes H, Fletcher MA, Klimas NG, Smith FA, O’Gorman MR, Vernon SD, Taylor R (2012) Cytokine expression profiles of immune imbalance in post-mononucleosis chronic fatigue. J Transl Med 10(1):191. doi:10.1186/1479-5876-10-191PubMedPubMedCentralGoogle Scholar
  93. 93.
    Bossi G, Griffiths GM (2005) CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin Immunol 17(1):87–94. doi:10.1016/j.smim.2004.09.007PubMedGoogle Scholar
  94. 94.
    Kam CM, Hudig D, Powers JC (2000) Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta 1477(1–2):307–323PubMedGoogle Scholar
  95. 95.
    Tang H, Li C, Wang L, Zhang H, Fan Z (2012) Granzyme H of cytotoxic lymphocytes is required for clearance of the hepatitis B virus through cleavage of the hepatitis B virus X protein. J Immunol 188(2):824–831. doi:10.4049/jimmunol.1102205PubMedGoogle Scholar
  96. 96.
    Zhong C, Li C, Wang X, Toyoda T, Gao G, Fan Z (2012) Granzyme K inhibits replication of influenza virus through cleaving the nuclear transport complex importin alpha1/beta dimer of infected host cells. Cell Death Differ 19(5):882–890. doi:10.1038/cdd.2011.178PubMedPubMedCentralGoogle Scholar
  97. 97.
    Ewen CL, Kane KP, Bleackley RC (2012) A quarter century of granzymes. Cell Death Differ 19(1):28–35. doi:10.1038/cdd.2011.153PubMedPubMedCentralGoogle Scholar
  98. 98.
    Tak PP, Spaeny-Dekking L, Kraan MC, Breedveld FC, Froelich CJ, Hack CE (1999) The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clin Exp Immunol 116(2):366–370PubMedPubMedCentralGoogle Scholar
  99. 99.
    Morris G, Maes M (2012) Increased nuclear factor-kappaB and loss of p53 are key mechanisms in Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses 79(5):607–613. doi:10.1016/j.mehy.2012.07.034PubMedGoogle Scholar
  100. 100.
    Maes M, Twisk FN, Ringel K (2012) Inflammatory and cell-mediated immune biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression: inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue syndrome than in depression. Psychother Psychosom 81(5):286–295. doi:10.1159/000336803PubMedGoogle Scholar
  101. 101.
    Al Omar SY, Marshall E, Middleton D, Christmas SE (2011) Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer. Immunology 133(1):94–104. doi:10.1111/j.1365-2567.2011.03415.xPubMedPubMedCentralGoogle Scholar
  102. 102.
    Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7(6):753–763PubMedGoogle Scholar
  103. 103.
    Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, Phillips JH, Lanier LL, Parham P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7(6):739–751PubMedGoogle Scholar
  104. 104.
    Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P (2003) The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol 171(12):6640–6649PubMedGoogle Scholar
  105. 105.
    Boulet S, Song R, Kamya P, Bruneau J, Shoukry NH, Tsoukas CM, Bernard NF (2010) HIV protective KIR3DL1 and HLA-B genotypes influence NK cell function following stimulation with HLA-devoid cells. J Immunol 184(4):2057–2064. doi:10.4049/jimmunol.0902621PubMedGoogle Scholar
  106. 106.
    Lopez-Larrea C, Blanco-Gelaz MA, Torre-Alonso JC, Bruges Armas J, Suarez-Alvarez B, Pruneda L, Couto AR, Gonzalez S, Lopez-Vazquez A, Martinez-Borra J (2006) Contribution of KIR3DL1/3DS1 to ankylosing spondylitis in human leukocyte antigen-B27 Caucasian populations. Arthr Res Ther 8(4):R101. doi:10.1186/ar1988Google Scholar
  107. 107.
    Tomescu C, Duh FM, Hoh R, Viviani A, Harvill K, Martin MP, Carrington M, Deeks SG, Montaner LJ (2012) Impact of protective killer inhibitory receptor/human leukocyte antigen genotypes on natural killer cell and T-cell function in HIV-1-infected controllers. Aids 26(15):1869–1878. doi:10.1097/QAD.0b013e32835861b0PubMedGoogle Scholar
  108. 108.
    Jiang Y, He L, Chen H, Bice T, Zhang Z, Liu J, Ding H, Han X, Shang H (2011) Alteration of inhibitory and activating NK cell receptor expression on NK cells in HIV-infected Chinese. Cell Immunol 271(2):219–226. doi:10.1016/j.cellimm.2011.06.026PubMedGoogle Scholar
  109. 109.
    Morvan M, Willem C, Gagne K, Kerdudou N, David G, Sebille V, Follea G, Bignon JD, Retiere C (2009) Phenotypic and functional analyses of KIR3DL1+ and KIR3DS1+ NK cell subsets demonstrate differential regulation by Bw4 molecules and induced KIR3DS1 expression on stimulated NK cells. J Immunol 182(11):6727–6735. doi:10.4049/jimmunol.0900212PubMedGoogle Scholar
  110. 110.
    Kupfer DM, Burian D (2008) MicroRNA: the newest player in gene expression regulation. Aviat Space Environ Med 79(5):550–551PubMedGoogle Scholar
  111. 111.
    Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, Li J (2012) Serum MicroRNA-155 as a potential biomarker to track disease in breast cancer. PLoS ONE 7(10):e47003. doi:10.1371/journal.pone.0047003PubMedPubMedCentralGoogle Scholar
  112. 112.
    Brenu EW, Ashton KJ, van Driel M, Staines DR, Peterson D, Atkinson GM, Marshall-Gradisnik SM (2012) Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Affect Disord 141(2–3):261–269. doi:10.1016/j.jad.2012.03.037PubMedGoogle Scholar
  113. 113.
    Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104(17):7080–7085. doi:10.1073/pnas.0702409104PubMedPubMedCentralGoogle Scholar
  114. 114.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033. doi:10.1158/0008-5472.CAN-05-0137PubMedGoogle Scholar
  115. 115.
    Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, Bandres E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Perez-Roger I, Garcia-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Roman-Gomez J, Prosper F (2008) Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res MCR 6(12):1830–1840. doi:10.1158/1541-7786.MCR-08-0167PubMedGoogle Scholar
  116. 116.
    Fang Y, Shi C, Manduchi E, Civelek M, Davies PF (2010) MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 107(30):13450–13455. doi:10.1073/pnas.1002120107PubMedPubMedCentralGoogle Scholar
  117. 117.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486. doi:10.1073/pnas.0605298103PubMedPubMedCentralGoogle Scholar
  118. 118.
    Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3(7):e2557. doi:10.1371/journal.pone.0002557PubMedPubMedCentralGoogle Scholar
  119. 119.
    Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180(8):5689–5698PubMedPubMedCentralGoogle Scholar
  120. 120.
    Sonkoly E, Pivarcsi A (2011) MicroRNAs in inflammation and response to injuries induced by environmental pollution. Mutat Res 717(1–2):46–53. doi:10.1016/j.mrfmmm.2011.02.002PubMedGoogle Scholar
  121. 121.
    Wu GQ, Zhao YM, Huang H, Lai XY (2011) Effects of blocking inhibitory KIR receptors on cytotoxic activity of human NK cells in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 40(5):475–481PubMedGoogle Scholar
  122. 122.
    Wiborg JF, van der Werf S, Prins JB, Bleijenberg G (2010) Being homebound with chronic fatigue syndrome: a multidimensional comparison with outpatients. Psychiatry Res 177(1–2):246–249. doi:10.1016/j.psychres.2010.02.010PubMedGoogle Scholar
  123. 123.
    Siegmund D, Wicovsky A, Schmitz I, Schulze-Osthoff K, Kreuz S, Leverkus M, Dittrich-Breiholz O, Kracht M, Wajant H (2005) Death receptor-induced signaling pathways are differentially regulated by gamma interferon upstream of caspase 8 processing. Mol Cell Biol 25(15):6363–6379. doi:10.1128/MCB.25.15.6363-6379.2005PubMedPubMedCentralGoogle Scholar
  124. 124.
    Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M, Cox S, Little AM, Alexander GJ, Cramp ME, O’Brien SJ, Rosenberg WM, Thomas DL, Carrington M (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305(5685):872–874. doi:10.1126/science.1097670PubMedGoogle Scholar
  125. 125.
    Stern M, Ruggeri L, Capanni M, Mancusi A, Velardi A (2008) Human leukocyte antigens A23, A24, and A32 but not A25 are ligands for KIR3DL1. Blood 112(3):708–710. doi:10.1182/blood-2008-02-137521PubMedGoogle Scholar
  126. 126.
    Franceschelli S, Rosati A, Lerose R, De Nicola S, Turco MC, Pascale M (2008) Bag3 gene expression is regulated by heat shock factor 1. J Cell Physiol 215(3):575–577. doi:10.1002/jcp.21397PubMedGoogle Scholar
  127. 127.
    Thananchai H, Gillespie G, Martin MP, Bashirova A, Yawata N, Yawata M, Easterbrook P, McVicar DW, Maenaka K, Parham P, Carrington M, Dong T, Rowland-Jones S (2007) Cutting Edge: allele-specific and peptide-dependent interactions between KIR3DL1 and HLA-A and HLA-B. J Immunol 178(1):33–37PubMedGoogle Scholar
  128. 128.
    Scrivo R, Morrone S, Spadaro A, Santoni A, Valesini G (2011) Evaluation of degranulation and cytokine production in natural killer cells from spondyloarthritis patients at single-cell level. Cytom Part B Clin Cytom 80(1):22–27. doi:10.1002/cyto.b.20549Google Scholar
  129. 129.
    Castoldi L, Golim MA, Filho OG, Romagnoli GG, Ibanez OC, Kaneno R (2007) Enhanced natural killer activity and production of pro-inflammatory cytokines in mice selected for high acute inflammatory response (AIRmax). Immunology 120(3):372–379. doi:10.1111/j.1365-2567.2006.02513.xPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lunemann A, Lunemann JD, Munz C (2009) Regulatory NK-cell functions in inflammation and autoimmunity. Mol Med 15(9–10):352–358. doi:10.2119/molmed.2009.00035PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • E. W. Brenu
    • 1
    • 2
    • 5
  • S. L. Hardcastle
    • 1
    • 2
  • G. M. Atkinson
    • 1
    • 2
  • M. L. van Driel
    • 3
  • S. Kreijkamp-Kaspers
    • 4
  • K. J. Ashton
    • 4
  • D. R. Staines
    • 2
    • 3
  • S. M. Marshall-Gradisnik
    • 1
    • 2
  1. 1.Griffith Health Institute, School of Medical ScienceGriffith UniversityGold CoastAustralia
  2. 2.The National Centre for Neuroimmunology and Emerging DiseasesGriffith UniversityGold CoastAustralia
  3. 3.Queensland Health, Gold Coast Public Health UnitRobina, Gold CoastAustralia
  4. 4.Faculty of Health Sciences and MedicineBond UniversityRobinaAustralia
  5. 5.Immunology Research Group, Centre for Medicine and Oral HealthGriffith UniversitySouthportAustralia

Personalised recommendations