Skip to main content
Log in

Global distribution modelling of macrophomina phaseolina (tassi) goid: a comparative assessment using ensemble machine learning tools

  • Original Research Article
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Macrophomina phaseolina, a soil saprophytic plant pathogen of global distribution and wide host range, was studied in relation to current and future (2050 and 2070) climate change scenarios, soil variables, and habitat heterogeneity indices (HHI). On 285 geographically thinned, presence-only data, we used R program-based Ensemble Species Distribution Modelling (ESDM) and eight individual algorithms to do ensemble modelling. When compared to other algorithms and ensemble outcomes, our study demonstrated that Random Forest (RF) was the best predictive individual algorithm. As a consequence, we utilized RF to assess this species’ habitat appropriateness, niche width, niche overlap, and area occupied within pre-defined habitat classes. In the present and 2050 Bio-Climatic (BC) periods, isothermality was recognized as the most significant element, whereas annual mean temperature was indicated as the most important regulating factor during BC-2070. According to HHI, the population of this species drops monotonically as the coefficient of variation increases. With the exception of 15 to 30 cm, depth soil predictor demonstrated that sand percentage had the least influence on the pathogen’s habitat at all examined depths. Silt played a vital function at varied depths. The findings of ESDM with the combined current data set demonstrated that climatic factors outperformed HHI and soil variables in terms of dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Kader MM, El-Mougy NS, Aly MDEH, Lashin SM (2010) First report of ashy stem blight caused by Macrophomina phaseolina on Aeonium canariense in Egypt. J Plant Pathol Microbiol 1:101. https://doi.org/10.4172/2157-7471.1000101

    Article  CAS  Google Scholar 

  • Ahmad R, Khuroo AA, Hamid M, Charles B, Rashid I (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers Conserv https://doi.org/10.1007/s1053

    Article  Google Scholar 

  • Akhtar KP, Sarwar G, Arshad HMI (2011) Temperature response, pathogenicity, seed infection and mutant evaluation against Macrophomina phaseolina causing charcoal rot disease of sesame. Arch Phytopath Plant Prot 44:320–330

    Article  Google Scholar 

  • Al-Hazmi AS, Dawabah AAM, Al-Nadhary SN, Al-Yahya FA, Lafi HA (2017) Influence of soil texture and moisture on the interaction of Meloidogyne javania and Macrophomina phaseolina on green beans. J Exp Biol Agric Sci. https://doi.org/10.18006/2017.5(Spl-1-SAFSAW).S148.S154

    Article  Google Scholar 

  • Amissah GMJ, Bongers F, Hawthorne WD, Poorter L (2014) Rainfall and temperature affect tree species distribution in Ghana. J Trop Ecol 30:435–446

    Article  Google Scholar 

  • Apollo O, Gomez J, De Faveri JM, Neal EAB, Mark E, Herrington (2020) Response of Strawberry Cultivars inoculated with Macrophomina phaseolina in Australia. Int J Fruit Sci 20(2):164–177. https://doi.org/10.1080/15538362.2019.1709114

    Article  Google Scholar 

  • Arias RS, Ray JD, Mengistu A, Scheffler BE (2011) Discriminating microsatellites from Macrophomina phaseolina and their potential association to biological functions. Plant Pathol 60:709–718

    Article  CAS  Google Scholar 

  • Baird RE, Watson CE, Scruggs M (2003) Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis 87:563–566

    Article  PubMed  Google Scholar 

  • Bhusal DR, Tsiafouli MA, Sgardelis SP (2015) Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia. https://doi.org/10.1007/s00442-015-3316-4

    Article  PubMed  Google Scholar 

  • Bosso L, Russo DD, Febbraro M, Cristinzio G, Zonia A (2016) Potential distribution of Xylella fstidiosa in Italy: a maximum entropy model. Phytopathol Mediterr 55(1):62–72

    Google Scholar 

  • Breiner F, Guisan A, Bergamini A, Nobis M (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218

    Article  Google Scholar 

  • Breiner FT, Guisan A, Bergamini A, Nobis MP (2016) Overcoming limitations of modelling rare species by using ensembles of small models. J Anim Ecol 1210–1218. https://doi.org/10.1111/2041-210x.12403

  • Chakraborty S, Murray GM, Magarey PA, Yonow T, Sivasithamparam K, O’Brien RG, Croft BJ, Barbetti MJ, Old KM, Dudzinski MJ, Sutherst RW, Penrose LJ, Archer C, Emmett RW (1998) Potential impact of climate change on plant diseases of economic significance to Australia. Austral Plant Pathol 27(1):15–35

    Article  Google Scholar 

  • Chamorro M, Miranda L, Domínguez P, Medina JJ, Soria C, Romero F, López-Aranda JM, De los Santos B (2015) Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Prot 67:279–286

    Article  Google Scholar 

  • Charney ND, Record S, Gerstner BE, Merow C, Zarnetske PL, Enquist BJ (2021) A test of species distribution Model Transferability Across Environmental and Geographic Space for 108 western north american Tree Species. Front Ecol Evol 9:689295. https://doi.org/10.3389/fevo.2021.689295

    Article  Google Scholar 

  • Claudino MR, Soares DJ (2014) Pathogenicity and aggressiveness of Macrophomina phaseolina isolates to castor (Ricinus communis). Trop Plant Pathol 39(6):453–456

    Article  Google Scholar 

  • Coban HO, Orucu OK, Arslan ES (2020) MaxEnt modelling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 2671. https://doi.org/10.3390/su12072671

  • Cohen R, Elkabetz M, Edelstein M (2016) Variation in the responses of melon and watermelon to Macrophomina phaseolina. Crop Prot 85:46–51

    Article  Google Scholar 

  • Cotrina Sánchez A, Rojas Briceño NB, Bandopadhyay S, Ghosh S, Torres Guzmán C, Oliva M, Guzman BK, Salas López R (2021) Biogeographic distribution of Cedrela spp. Genus in Peru using MaxEnt Modelling: A Conservation and Restoration Approach. Diversity 13:261. https://doi.org/10.3390/d13060261

    Article  Google Scholar 

  • Delgado-Baquerizo M, Guerra CA, Cano-Diaz C, Egidi E, Wang JT, Eisenhauer N, Singh BK, Maestre FT (2020) The proportion of soil-borne pathogen increases with warming at the global scale. Nat Clim Change. https://doi.org/10.1038/s41558-020-0759-3

    Article  Google Scholar 

  • Don G, Hutton Apollo O, Gomez S, Mattner W (2013) Macrophomina phaseolina and its Association with Strawberry Crown rot in Australia. Int J Fruit Sci 13:149–155. https://doi.org/10.1080/15538362.2012.698143

    Article  Google Scholar 

  • Duan RY, Kong XQ, Huang MY, Fan WY, Wang ZG (2014) The Predictive Performance and Stability of six species distribution models. PLoS ONE 9(11):e112764. https://doi.org/10.1371/journal.pone.0112764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fuhlbohm MJ, Ryley MJ, Aitken EAB (2012) New weed hosts of Macrophomina phaseolina in Australia. Australas Plan Dis Notes 7:193–195

    Article  Google Scholar 

  • Ganley RJ, Watt MS, Kriticos DJ, Hopkins AJM, Manning LK (2011) Increased risk of pitch canker to Australasia under climate change. Australas Plant Pathol 40(3):228–237

    Article  Google Scholar 

  • Goldreich Y (2003) The climate of Israel: observation, research and application. Springer, NewYork

    Book  Google Scholar 

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17. https://doi.org/10.1111/j.1600-0587.2010.06152.x

    Article  Google Scholar 

  • Gupta GK, Sharma SK, Ramteke R (2012) Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) with special reference to Charcoal rot of soybean (Glycine max (L.) Merrill). J Phytopathol 160:167–180

    Article  Google Scholar 

  • Hao T, Guillera-Arroita G, May TW, Lahoz-Monfort JJ, Elith J (2020) Using species distribution models for fungi. Fungal Biol Rev 34(2):74–88

    Article  Google Scholar 

  • Hengl T, De Jesus JM, Heuvelink GBM et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12:e0169748

    Article  PubMed  PubMed Central  Google Scholar 

  • Ireland KB, Kiritcos DJ (2019) Why are plant pathogens under-represented in eco-climatic nice modelling? Inter J Pest Manag. https://doi.org/10.1080/09670874.2018.1543910

    Article  Google Scholar 

  • Ishikawa MS, Ribeiro NR, de Almeida AA et al (2019) Identification of soybean genotypes resistant to charcoal rot by seed inoculation with Macrophomina phaseolina. J Agric Sci 11:213–219

    Google Scholar 

  • Jacob CJ, Krarup C, Diaz GA et al (2013) A severe outbreak of charcoal rot in cantaloupe melon caused by Macrophomina phaseolina in Chile. Plant Dis 97(1):141. https://doi.org/10.1094/PDIS-06-12-0588-PDN

    Article  CAS  PubMed  Google Scholar 

  • Jana T, Sharma TR, Prasad RD et al (2003) Molecular characterization of Macrophomina phaseolina and fusarium species by a single primer RAPD technique. Microbiol Res 158:249–257

    Article  CAS  PubMed  Google Scholar 

  • Jeger MJ (2022) The impact of climate change on disease in wild plant population and communities. Plant Pathol 71:111–110

    Article  Google Scholar 

  • Kaky E, Nolan V, Alatawi A et al (2020) A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with egyptian medicinal plants. Ecol Inf 60. https://doi.org/10.1016/j.ecoinf.2020.101150

  • Kamala Kannan A, Mohan L, Valluvaparidasan V, Mareeswari P, Karuppiah R (2006). First report of Macrophmina root rot (Macrophomina phaseolina) on medicinal coleus (Coleus forskohlii) in India. Plant Pathol 55(2): 302. https://doi.org/10.1111/j.1365-3059.2005.01302.x

  • Karami P, Rezaei S, Shadloo S, Naderi M (2020) An evaluation of central Iran’s protected areas under different climate change scenarios (a case on Markazi and Hamedan provinces). J Mountain Sci 17(1):68–82

    Article  Google Scholar 

  • Kass JM, Vilela B, Aiello-Lammen ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modelling of species niches and distributions built for community expansion. Methods Ecol Evol 9:1151–1156. https://doi.org/10.1111/2041-210X.12945

    Article  Google Scholar 

  • Kaur S, Dhillon GS, Brar SK et al (2012a) Emerging phyopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 1–16

  • Kaur S, Chauhan VB, Singh JP et al (2012b) Status of Macrophomina stem canker disease of pigeonpea in eastern Uttar Pradesh. J Food Leg 25:76–78

    Google Scholar 

  • Kaur S, Dhillon GS, Brar SK et al (2012c) Carbohydrate degrading enzyme production by the plant pathogenic mycelia and pycnidia strains of Macrophomina phaseolina through koji fermentation. Ind Crops Prod 36:140–148

    Article  CAS  Google Scholar 

  • Keote GA, Reddy MSP (2019) Bio-inoculants used against chickpea dry root rot incited by Rhizoctonia bataticola (taub). Butl J Mycopathological Res 57:107–111

    Google Scholar 

  • Khan AM, Li Q, Saqib Z et al (2022) MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) In South Asia. Forests 13:715. https://doi.org/10.3390/f13050715

    Article  Google Scholar 

  • Khangura R, Aberra M (2009) First report of charcoal rot on canola caused by Macrophomina phaseolina in western Australia. Plant Dis 93(6):666

    Article  CAS  PubMed  Google Scholar 

  • Koike ST (2008) Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Dis 92(8):1253

    Article  CAS  PubMed  Google Scholar 

  • Konowalik K, Nosol A (2021) Evaluation metrics and validation of presence only species distribution models based on distributional maps with varying coverage. Sci Rep. https://doi.org/10.1038/s41598-020-80062-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and non-native plant species richness. Ecology. 87:3186–3199.

  • Kumar S, Stohlgren TJ (2009) MaxEnt modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol and Nat Environ 1:94–98

    Google Scholar 

  • Lalita L, Ahir RR (2020) In-vivo evaluation of different fungicides, plant extracts, biocontrol agents and organics amendments for management of dry root rot of chickpea caused by Macrophomina phaseolina. Leg Res 43:140–145

    Google Scholar 

  • Li Y, Li M, Li C et al (2020a) Optimized maxent model predictions of climate change impacts on the suitable distribution of cunninghamia lanceolata in China. Forests 11:302

    Article  Google Scholar 

  • Li Y, Tang ZY, Yan YJ et al (2020b) Incorporating species distribution model into the red list assessment and conservation of macro fungi: a case study with Ophiocordyceps sinensis. Biodiver Sci 28:99–106

    Article  Google Scholar 

  • Liu G, Liu C, Yuquo L et al (2012) Effects of climate, disturbance and soil factors on the potential distribution of Liaotung oak (Quercus wutaishanica Mayr) in China. Ecol Res 27:427–436

    Article  Google Scholar 

  • Lodha S, Sharma SK (2002) Effect of natural heating and different concentration of Brassica amendments on survival of Macrophomina phaseolina. Indian Phytopathol 55:303–305

    Google Scholar 

  • Lodha S, Sharma SK, Agarwal RK (2002) Inactivation of Macrophomina phaseolina during composting and effect of compost on dry rot severity and on seed yield of clusterbean. Eur J Plant Pathol 108:253–259

    Article  Google Scholar 

  • Ma B, Sun J (2018) Predicting the distribution of Stipa purpurea across the Tibetan Plateau via Maxent model. BMC Ecol 18:10. https://doi.org/10.1186/s12898-018-0165-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud AFA, Budak H (2011) First report of charcoal rot caused by Macrophomina phaseolina in sunflower in Turkey. Plant Dis 95:223–223

    Article  CAS  PubMed  Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Marquez N, Giachero ML, Declerck S et al (2021) Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.634397

  • Martinez-Salgado SJ, Ramero-Arenas O, Morales-Mora L et al (2021) First report of Macrophomina phaseolina causing charcoal rot of peanut (Arachis hypogea L.) in Mexico. Plant Dis 23. https://doi.org/10.1094/PDIS-02-21-0337-PDN

  • Mathur M, Mathur P, Purohit H (2023) Ecological niche modelling of a critically endangered species Commiphora wightii (Arn.) Bhandari using bioclimatic and non-bioclimatic variables. Ecol Process 12:8. https://doi.org/10.1186/s13717-023-00423-2

    Article  Google Scholar 

  • Mengistu A, Yin X, Bellalout IN et al (2016) Potassium and phosphorus have no effect on severity of charcoal rot of soybean. Can J Plant Pathol. https://doi.org/10.1080/07060661.2016.1168869

    Article  Google Scholar 

  • Merow C, Smith M, Guisan A et al (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography 37:1267–1281

    Article  Google Scholar 

  • Mishra SN, Kumar D, Kumar B et al (2021) Assessing impact of varying climatic conditions on distribution of Buchanania cochinchinensis in Jharkhand using species distribution modelling approach. Curr Res Environ Sustain. https://doi.org/10.1016/j.crsust.2021.100025

    Article  Google Scholar 

  • Mousazade M, Ghanbarian G, Pourghasemi HR et al (2019) Maxent data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus fasciculifolius Boiss. In Fars, Iran. Sustainability 11:3452. https://doi.org/10.3390/su11123452

    Article  Google Scholar 

  • Ndiaye M, Sarr MP, Cisse N et al (2015) Is the recently described Macrophomina pseudophaseolina pathogenically different from Macrophomina phaseolina? Afr J Microbiol Res 9(45):2232–2238

    Article  Google Scholar 

  • Nouri MT, Lawrence DP, Kallsen CE (2020) Macrophomina crown and root rot of Pistachio in California. Plants 9:134. https://doi.org/10.3390/plants9020134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaya G, Abawi GS (1996) Effect of water potential on mycelial growth and on production and germination of sclerotia of Macrophomina phaseolina. Plant Dis 80:1347–1350

    Article  Google Scholar 

  • Oppel S, Meirinho A, Ramírez I et al (2012) Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol Conserv 156:94–104. https://doi.org/10.1016/j.biocon.2011.11.013

    Article  Google Scholar 

  • Osorio-Olivera L, Lira-Noriega A, Soberon J et al (2020) Ntbox: an R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 11:1199–1206. https://doi.org/10.1111/2041-210X.13452. https://github.com/luismurao/ntbox

    Article  Google Scholar 

  • Padalia H, Srivastava V, Kushwaha SPS (2014) Modelling potential invasion range of alien invasion species, Hyptis suaveolens (L) in India: comparison of MaxEnt and GARP. Ecol Inf 22:36–43

    Article  Google Scholar 

  • Pandey AK, Bansadrai AK (2021) Will Macrophomina phaseolina spread in legumes due to climate change? A critical review of current knowledge. J Plant Dis Protec 128:9–18

    Article  Google Scholar 

  • Pecchi M, Marchi M, Burton V et al (2019) Species distribution modelling to support forest management. A literature reviews. Ecol Model 411:108817

    Article  Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modelling: a comparison of GARP and Maxent. Ecography 30:550–560

    Article  Google Scholar 

  • Poudel B, Shivas RG, Adorada DL et al (2021) Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia. Eur J Plant Pathol. https://doi.org/10.1007/s10658-021-02300-0

    Article  Google Scholar 

  • Pradhan P (2016) Strengthening Maxent modelling through screening of redundant explanatory Bioclimatic variables with Variance inflation factor analysis. Researcher 8(5):29–34

    Google Scholar 

  • Raj Krishan N, Tripathi N, Rajinder S (1999) Role of edaphic factors on the incidence of dry root-rot of sesame caused by Rhizoctonia bataticola (taub.) Butl. Sesame Safflower News Lett 14:69–71

    Google Scholar 

  • Ratnoo RS, Jain KL, Bhatnagar MK (1997) Variations in Macrophomina phaseolina isolates of Ash-gray stem blight of cowpea. J Mycol Plant Pathol 27:91–92

    Google Scholar 

  • Razavi SE, Pahlavani MH (2004) Isolation of the causal of charcoal rot disease of safflower and resistance of some cultivars to the disease, 16 edn. Iranian Plant Protec Cong, Tabriz, Iran

    Google Scholar 

  • Ren Y, Lu Y, Hu J et al (2021) Geodiversity underpins biodiversity but the relations can be complex: implications from two biodiversity proxies. Glob Ecol Conserv 31. https://doi.org/10.1016/j.gecco.2021.e01830

  • Rew J, Cho Y, Hwang EA (2021) Robust prediction model for species distribution using bagging ensembles with deep neural networks. Remote Sens 13:1495. https://doi.org/10.3390/rs13081495

    Article  Google Scholar 

  • Reznikov S, Chiesa MA, Pardo EM et al (2019) Soybean-macrophomina phaseolina specific interaction and identification of a novel source of resistance. Phytopathol 109:63–73

    Article  CAS  Google Scholar 

  • Rong Z, Zhao C, Liu J et al (2019) Modelling the effect of climate change on the potential distribution of Qinghai Spruce (Picea crassifolia Kom.) In Qilian mountains. Forests 62. https://doi.org/10.3390/f10010062

  • Sarr MP, Ndiaye M, Groenewald JZ et al (2014) Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathol Mediterr 53:250–268

    Google Scholar 

  • Schmitt S, Pouteau R, Justeau D et al (2017) SSDM: an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol Evol 8:1795–1803. https://doi.org/10.1111/2041-210X.12841

    Article  Google Scholar 

  • Sergeeva V, Tesoriero L, Spooner-Hart R et al (2005) First report of Macrophomina phaseolina on olives (Olea europaea) in Australia. Australas Plant Pathol 34:273–274

    Article  Google Scholar 

  • Sharma S, Kumar K (2009) Root rot of Jatropha curcas incited by Rhizoctonia bataticola in India. Indian Forester 135(3):433–434

    Google Scholar 

  • Sharma SK, Aggarwal RK, Lodha S (1995) Population changes of Macrophomina phaseolina and fusarium oxysporum f. sp. Cumini in oil-cake and crop residue-amended sandy soils. Appl Soil Ecol 2:281–284

    Article  Google Scholar 

  • Sillero N, Barbosa AM (2021) Common mistakes in ecological niche models. Int J Geograp Infor Sci 35:213–226. https://doi.org/10.1080/13658816.2020.1798968

    Article  Google Scholar 

  • Steven T, Koike RS, Arias CS et al (2016) Status of Macrophomina phaseolina on Strawberry in California and preliminary characterization of the Pathogen. Int J of Fruit Sci 16:148–159. https://doi.org/10.1080/15538362.2016.1195313

    Article  Google Scholar 

  • Stohlgren TJ, Ma P, Kumar S et al (2010) Ensemble habitat mapping of invasive plant species. Risk Anal 30:224–235. https://doi.org/10.1111/j.1539-6924.2009.01343.x

    Article  PubMed  Google Scholar 

  • Su G, Suh SO, Schneider RW et al (2001) Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathol 91:120–126

    Article  CAS  Google Scholar 

  • Sun S, Wang X, Zhu Z et al (2016) Occurrence of charcoal rot caused by Macrophomina phaseolina, an emerging disease of Adzuki Bean in China. J Phytopathol 164:212–216

    Article  CAS  Google Scholar 

  • Suriachandraselvan M, Aiyyanathan KEA, Vimala R (2005) Host range and cross inoculation studies on Macrophomina phaseolina from sunflower. Madras Agr Res J 92:238–240

    Google Scholar 

  • Suryawanshi AP, Mule VP, Apet KT et al (2015) Managing Macrophomina phaseolina causing charcoal rot of sunflower (Helianthus annus) by soil amendment. India Phytopathol 68(2):196–200

    Google Scholar 

  • Taliei F, Safaie N, Aghajani MA (2013) Spatial distribution of Maxrophomina phaseolina and soybean charcoal rot incidence using geographic information system (a case study in northern Iran). JAST 15:1523–1536

    Google Scholar 

  • Teja TS, Kelayia D, Asha R (2020) Impact of environmental factors on Macrophomina phaseolina causing charcoal rot of soybean. Int J Curr Microbiol Appl Sci 9:3784–3790

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R et al (2009) BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2020) Biomod2: ensemble platform for species distribution modelling. Vienna, Austria, R Development Core Team

    Google Scholar 

  • Tomáš V, Petr K, Martin K et al (2019) A meta-analysis of global fungal distribution reveals climate-driven pattern. Nat Commun. https://doi.org/10.1038/s41467-019-13164-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonin R, Fatima B, Avozani A (2013) Efficacy of fungicides against M. phaseolina in cotton. Agropec Trop 43:460–466

    Article  Google Scholar 

  • Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol Biogeography. https://doi.org/10.1111/geb.12365

    Article  Google Scholar 

  • Wang R, Li Q, He S et al (2018) Modeling and mapping the current and future distribution of Pseudomonas syringae pv. Actinidiae under climate change in China. PLoS ONE 13(2):e0192153. https://doi.org/10.1371/journal.pone.0192153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol App 21:335–342

    Article  Google Scholar 

  • Watt MS, Kriticos DJ, Alcaraz S et al (2009) The hosts and potential geographic range of Dothistroma needle blight. For Ecol Manag 257(6):1505–1519

    Article  Google Scholar 

  • Watt MS, Ganley RJ, Kriticos DJ et al (2011) Dothistroma needle blight and pitch canker: the current and future potential distribution of two devastating diseases of Pinus species. Can J for Res 41(2):412–424

    Article  Google Scholar 

  • Xu W, Jin J, Cheng J (2021) Predicting the potential Geographic distribution and Habitat Suitability of two economic forest trees on the Loess Plateau, China. Forests 12:747. https://doi.org/10.3390/f12060747

    Article  Google Scholar 

  • Ye XZ, Zhao GH, Zhang MZ et al (2020) Distribution pattern of endangered plants semiliquidambar catayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forest 11:434. https://doi.org/10.3390/f11040434

    Article  Google Scholar 

  • Yonow T, Hattingh V, de Villiers M (2013) CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Prot 4418–4428

  • Zhang JQ, Zhu ZD, Duan CX et al (2011) First report of charcoal rot caused by Macrophomina phaseolina on mungbean in China. Plant Dis 95(7). https://doi.org/10.1094/PDIS-01-11-0010

  • Zhang K, Sun L, Tao J (2020) Impact of climate change on the distribution of Euscaphis japonica (Staphyleaceae) trees. Forests 11:525. https://doi.org/10.3390/f11050525

    Article  CAS  Google Scholar 

  • Zhang Y, Tang J, Ren G et al (2021) Global potential distribution prediction of Xanthium italicum based on Maxent Model. Sci Rep. https://doi.org/10.1038/s41598-021-96041-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Cui X, Sun J et al (2021) Analysis of the distribution pattern of chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol Indic 132. https://doi.org/10.1016/j.ecolind.2021.108256

  • Zveibil A, Freeman S (2005) First report of crown and root rot in strawberry caused by Macrophomina phaseolina in Israel. Plant Dis 89:1014–1014

    Article  CAS  PubMed  Google Scholar 

  • Zveibil A, Mor N, Gnayem N et al (2012) Survival, host–pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Dis 96:265–272

    Article  PubMed  Google Scholar 

  • ICRISAT Happenings (2019) Real-time surveillance decrypts dry root rot spread in Central India Available online at: https://www.icrisat.org/real-time-surveillance-decrypts-dry-root-rot-spread-in-central-india/ (accessed April 11th, 2022)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manish Mathur conceived of the study’s central hypothesis and its interpretation of results from various machine learning methods. Preet Mature performed numerous types of statistical analysis, employing a wide range of software, and transforming the results appropriately for interpretation and visualisation.

Corresponding author

Correspondence to Manish Mathur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, M., Mathur, P. Global distribution modelling of macrophomina phaseolina (tassi) goid: a comparative assessment using ensemble machine learning tools. Australasian Plant Pathol. 52, 353–371 (2023). https://doi.org/10.1007/s13313-023-00927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-023-00927-7

Keywords

Navigation