Effect of Austropuccinia psidii inoculum concentration on myrtle rust disease incidence and severity


Austropuccinia psidii (myrtle rust) is one of the most significant threats to plant industries and biodiversity in the Australasian region. Susceptibility phenotypes of Australian native Myrtaceae to A. psidii have varied significantly since the pathogen was first detected in Australia in 2010, with some species appearing to increase in susceptibility over time. We hypothesise that increased inoculum concentrations in natural ecosystems may be contributing to observed changes in susceptibility phenotypes. A study was undertaken to determine the effect of A. psidii inoculum concentration on myrtle rust disease incidence and severity on five native (Rhodamnia rubescens, Syzygium hemilamprum, S. leuhmanii, S. moorei and S. oleosum) and one exotic (S. jambos) species of Myrtaceae under controlled conditions. Disease incidence and severity were found to increase across all species as inoculum concentration increased, with notable increases for species considered to be tolerant or of lower susceptibility to A. psidii. This improved understanding of the influence of increasing inoculum A. psidii concentrations on susceptibility phenotypes can now be integrated with current management and research plans, to predict and mitigate the impact of A. psidii on Australian native biota and ecosystems.

This is a preview of subscription content, access via your institution.


  1. Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61. https://doi.org/10.11646/phytotaxa.297.1.5

    Article  Google Scholar 

  2. Berthon K, Esperon-Rodriguez M, Beaumont LJ, Carnegie AJ, Leishman MR (2018) Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in. Australia Biol Conserv 218:154–162. https://doi.org/10.1016/j.biocon.2017.11.035

    Article  Google Scholar 

  3. Borges LS, Rios JA, Aucique-Perez CE, Belisario R, Duarte HDS, Furtado GQ (2019) Standard area diagram set to assess rust severity on eucalyptus leaves. For Pathol 49 https://doi.org/10.1111/efp.12510

  4. Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia Australasian. Plant Pathol 39:463–466. https://doi.org/10.1071/ap10102

    Article  Google Scholar 

  5. Carnegie AJ (2015) First Report of Puccinia psidii (Myrtle Rust) in Eucalyptus Plantations in. Aust Plant Dis 99:161–161. https://doi.org/10.1094/pdis-09-14-0901-pdn

    CAS  Article  Google Scholar 

  6. Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144. https://doi.org/10.1007/s10530-015-0996-y

    Article  Google Scholar 

  7. Carnegie AJ, Pegg GS (2018) Lessons from the Incursion of Myrtle Rust in Australia. In: Leach JE, Lindow SE (eds) Annual Review of Phytopathology, Vol 56. Annual Review of Phytopathology. pp 457–478. https://doi.org/10.1146/annurev-phyto-080516-035256

  8. Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825. https://doi.org/10.1094/pdis.1998.82.7.819

    CAS  Article  PubMed  Google Scholar 

  9. Dale AL et al (2019) Mitotic recombination and rapid genome evolution in the invasive forest pathogen Phytophthora ramorum. mBio 10:e02452-02418. https://doi.org/10.1128/mBio.02452-18

    Article  Google Scholar 

  10. Doran J, Lea D, Bush D (2012) Assessing myrtle rust in a lemon myrtle provenance trial. Rural Industries Research and Development Corporation, Barton

    Google Scholar 

  11. Fernandez Winzer L, Carnegie AJ, Pegg GS, Leishman MR (2018) Impacts of the invasive fungus Austropuccinia psidii (myrtle rust) on three Australian Myrtaceae species of coastal swamp woodland. Austral Ecol 43:56–68. https://doi.org/10.1111/aec.12534

    Article  Google Scholar 

  12. Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy a review. Australas Plant Pathol 36:1–16. https://doi.org/10.1071/ap06088

    Article  Google Scholar 

  13. Grünwald NJ, LeBoldus JM, Hamelin RC (2019) Ecology and evolution of the Sudden Oak Death pathogen Phytophthora ramorum. Annu Rev Phytopathol 57:301–321. https://doi.org/10.1146/annurev-phyto-082718-100117

    CAS  Article  PubMed  Google Scholar 

  14. Ireland KB, Hüberli D, Dell B, Smith IW, Rizzo DM, Hardy GESJ (2012) Potential susceptibility of Australian flora to a NA2 isolate of Phytophthora ramorum and pathogen sporulation potential. For Pathol 42:305–320. https://doi.org/10.1111/j.1439-0329.2011.00755.x

    Article  Google Scholar 

  15. Ireland KB, Hunter GC, Wood A, Delaisse C, Morin L (2019) Evaluation of the rust fungus Puccinia rapipes for biological control of Lycium ferocissimum (African boxthorn) in Australia: life cycle. taxonomy pathogenicity Fungal Biology 123:811–823. https://doi.org/10.1016/j.funbio.2019.08.007

    CAS  Article  PubMed  Google Scholar 

  16. Junghans DT, Alfenas AC, Maffia LA (2003) Escala de notas para quantificação da ferrugem em. Eucalyptus Fitopatologia Brasileira 28:184–188

    Article  Google Scholar 

  17. Kanaskie A et al (2017) Slowing spread of sudden oak death in Oregon forests, 2001–2015 [Abstract]. In: Frankel SJ, Harrell KM, coords t (eds) Proceedings of the sudden oak death sixth science symposium. Gen. Tech. Rep. GTR-PSW-255. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, p 1

  18. Lee DJ, Brawner JT, Pegg GS (2015) Screening eucalyptus cloeziana and E-argophloia populations for resistance to Puccinia psidii. Plant Dis 99:71–79

    CAS  Article  Google Scholar 

  19. McTaggart AR et al (2018) Chromium sequencing: the doors open for genomics of obligate plant pathogens. BioTechniques 65:253–256. https://doi.org/10.2144/btn-2018-0019

    CAS  Article  PubMed  Google Scholar 

  20. Morin L, Aveyard R, Lidbetter JR, Wilson PG (2012) Investigating the host range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. Plos One 7:7. https://doi.org/10.1371/journal.pone.0035434

    CAS  Article  Google Scholar 

  21. O’Hanlon R, Choiseul J, Brennan JM, Grogan H (2018) Assessment of the eradication measures applied to Phytophthora ramorum in Irish Larix kaempferi forests. For Pathol 48:e12389. https://doi.org/10.1111/efp.12389

    Article  Google Scholar 

  22. Pegg GS, Brawner JT, Lee DJ (2014) Screening Corymbia populations for resistance to Puccinia psidii. Plant Pathol 63:425–436. https://doi.org/10.1111/ppa.12097

    Article  Google Scholar 

  23. Pegg GS et al (2014) Puccinia psidii in Queensland, Australia: disease symptoms. distribution impact Plant Pathol 63:1005–1021. https://doi.org/10.1111/ppa.12173

    Article  Google Scholar 

  24. Pegg G, Taylor T, Entwistle P, Guymer G, Giblin F, Carnegie A (2017) Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. Plos One 12. https://doi.org/10.1371/journal.pone.0188058

  25. Pegg GS, Lee DJ, Carnegie AJ (2018) Predicting impact of Austropuccinia psidii on populations of broad leaved Melaleuca species in Australia. Australas Plant Pathol 47:421–430. https://doi.org/10.1007/s13313-018-0574-8

    CAS  Article  Google Scholar 

  26. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  27. Swiecki T, Bernhardt E (2008) Increasing distance from California bay laurel reduces the risk and severity of Phytophthora ramorum canker in coast live oak. In: Frankel S, Kliejunas J, Palmieri K, coords t (eds) Proceedings of the sudden oak death third science symposium. Gen. Tech. Rep. PSW-GTR-214. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, pp 181–194

  28. Tobias PA, Park RF, Kulheim C, Guest DI (2015) Wild-sourced Chamelaucium uncinatum have no resistance to Puccinia psidii (myrtle rust). Aust Plant Dis Notes 10 https://doi.org/10.1007/s13314-015-0167-0

  29. Tobias PA, Guest DI, Külheim C, Hsieh J-F, Park RF (2016) A curious case of resistance to a new encounter pathogen: myrtle rust in Australia. Mol Plant Pathol 17:783–788. https://doi.org/10.1111/mpp.12331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Tobias PA, Guest DI, Kulheim C, Park RF (2018) De novo transcriptome study identifies candidate genes involved in resistance to & IT;Austropuccinia psidii & IT; (Myrtle Rust) in & IT;Syzygium luehmannii & IT;(Riberry). Phytopathology 108:627–640. https://doi.org/10.1094/phyto-09-17-0298-r

    CAS  Article  PubMed  Google Scholar 

  31. Uchida JY, Loope LL (2009) A recurrent epiphytotic of guava rust on rose apple, Syzygium jmbos in Hawaii. Plant Dis 93:429–429. https://doi.org/10.1094/pdis-93-4-0429b

    CAS  Article  PubMed  Google Scholar 

  32. Webber JF (2017) Phytophthora ramorum: update on the impact and wider consequences of the epidemic in Britain. In: Frankel SJ, Harrell KM, coords t (eds) Proceedings of the sudden oak death sixth science symposium. Gen. Tech. Rep. GTR-PSW-255. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, pp 4–6

  33. Xavier AA, Alfenas AC, Matsuoka K, Hodges CS (2001) Infection of resistant and susceptible Eucalyptus grandis genotypes by urediniospores of Puccinia psidii. Australas Plant Pathol 30:277–281. https://doi.org/10.1071/ap01038

    Article  Google Scholar 

  34. Zauza EAV, Couto MMF, Lana VM, Maffia LA, Alfenas AC (2010) Vertical spread of Puccinia psidii urediniospores and development of eucalyptus rust at different heights. Australas Plant Pathol 39:141–145. https://doi.org/10.1071/ap09073

    Article  Google Scholar 

  35. Zauza EAV, Lana VM, Maffia LA, Araujo MMFC, Alfenas RF, Silva FF, Alfenas AC (2015) Wind dispersal of Puccinia psidii urediniospores and progress of eucalypt rust. For Pathol 45:102–110. https://doi.org/10.1111/efp.12133

    Article  Google Scholar 

Download references


We acknowledge the support of the Australian Government’s Cooperative Research Centres Program and Queensland government’s Myrtle Rust Program. This work formed a part of the Plant Biosecurity CRC project 70186: Understanding myrtle rust epidemiology and host specificity to determine disease impact in Australia. We would also like to acknowledge the efforts of the reviewers and thank them for their valuable feedback.

Author information



Corresponding author

Correspondence to K. B. Ireland.

Electronic supplementary material


(DOC 281 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ireland, K.B., Pegg, G.S. Effect of Austropuccinia psidii inoculum concentration on myrtle rust disease incidence and severity. Australasian Plant Pathol. 49, 239–243 (2020). https://doi.org/10.1007/s13313-020-00699-4

Download citation


  • Eucalyptus rust
  • Puccinia psidii
  • host specificity
  • host susceptibility