Skip to main content

Baseline sensitivity of natural populations and characterization of resistant strains of Botrytis cinerea to fluazinam

Abstract

This study examined the baseline sensitivity of field populations of Botrytis cinerea before exposure to the fungicide fluazinam and evaluated the risk of fluazinam resistance. The mean EC50 (half maximal effective concentration) and minimum inhibitory concentration (MIC) for fluazinam were 0.0196 μg/mL and < 4 μg/mL, respectively. Five fluazinam-resistant strains were selected from wild-type isolates on potato dextrose agar (PDA) containing sub-lethal concentrations of fluazinam. The fluazinam-resistant strains were less fit than their parental isolates based on radial mycelial dry weight, pathogenicity and spore production. Moreover, on PDA amended with NaCl, the laboratory fluazinam-resistant strains grew slower than their fluazinam-sensitive parental isolates, especially at high concentrations of NaCl. Cross-resistance occurred between fluazinam and the dicarboximide procymidone and the phenylpyrrole fludioxonil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bardas GA, Veloukas T, Koutita O, Karaoglanidis GS (2010) Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag Sci 66:967–973

    CAS  PubMed  Article  Google Scholar 

  • Chen ZF, Wang WQ, Hzn XY, Zhang XF, Ma ZQ (2010) Review of chemical control of gray mold and fungicide resistance of Botrytis cinerea. J Hebei Agri Sci 14:19–23

    Google Scholar 

  • Cheol Soo Y, Eun-Hee J, Rog Y, Kim YBS (2008) Survey of fungicide resistance for chemical control of Botrytis cinerea on paprika. Plant Pathol J 24:447–452

    Article  Google Scholar 

  • Duan YB, Ge CY, Liu SM, Chen CJ, Zhou MG (2013) Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic Biochem Phys 106:61–67

    CAS  Article  Google Scholar 

  • Faretra F, Pollastro S (1993) Isolation, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana resistant to the phenylpyrrole fungicide CGA 173506. Mycol Res 97:620–624

    CAS  Article  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000a) Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pestic Biochem Phys 67:125–133

    CAS  Article  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000b) Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. J Pestic Sci 25:31–36

    CAS  Article  Google Scholar 

  • Guo ZJ, Miyoshi H, Komyoji T, Haga T, Fujita T (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-tri-fluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochim Biophys Acta 1056:89–92

    CAS  Article  Google Scholar 

  • Hu X, Roberts DP, Jiang M, Zhang Y (2005) Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Appl Microbiol Biotechnol 68:802–807

    CAS  PubMed  Article  Google Scholar 

  • Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE (2008) Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Phytopathology 98:205–214

    CAS  PubMed  Article  Google Scholar 

  • Komyoji T, Sugimoto K, Mitani S, Matsuo N, Suzuki K (1995) Biological properties of a new fungicide, fluazinam. J Pestic Sci 20:129–135

    CAS  Article  Google Scholar 

  • Lemay AV, Bailey JE, Shew BB (2002) Resistance of peanut to Sclerotinia blight and the effect of acibenzolar-S-methyl and fluazinam on disease incidence. Plant Dis 86:1315–1317

    CAS  Article  Google Scholar 

  • Leroch M, Plesken C, Weber RW, Kauff F, Scalliet G, Hahn M (2013) Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79:159–167

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58:876–888

    CAS  PubMed  Article  Google Scholar 

  • Liu G (2012) The latest registration of a fluazinam suspension concentrate. Pes Mar News 3:31–32

    Google Scholar 

  • Ma Z, Michailides TJ (2004) Characterization of iprodione-resistant Alternaria isolates from pistachio in California. Pestic Biochem Phys 80:75–84

    CAS  Article  Google Scholar 

  • Magarey RD, Emmett RW, Magarey PA, Franz PR (1993) Evaluation of control of grapevine anthracnose caused by Elsinoe ampelina by pre-infection fungicides. Australas Plant Pathol 22:48–52

    Article  Google Scholar 

  • Markoglou AN, Malandrakis AA, Vitoratos AG, Ziogas BN (2006) Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. Eur J Plant Pathol 115:149–162

    CAS  Article  Google Scholar 

  • McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245

    Article  Google Scholar 

  • Mueller DS, Bradley CA, Nielsen J (2008) Field crop fungicides for the north central United States. Agricultural Experiment Station, Iowa State University. 24–25

  • Myresiotis CK, Karaoglanidis GS, Tzavella-Klonari K (2007) Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide Fungicides. Plant Dis 91:407–413

    CAS  Article  Google Scholar 

  • Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I (2002) A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92:75–80

    CAS  PubMed  Article  Google Scholar 

  • Oshima M, Banno S, Okada K, Takeuchi T, Kimura M, Ichiishi A, Fujimura M (2006) Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide-resistant field isolates of Botrytis cinerea. J Gen Plant Pathol 72:65–73

    CAS  Article  Google Scholar 

  • Porter IJ, Donald EC, Cross SJ (1998) Field evaluation of fluazinam against clubroot (Plasmodiophora brassicae) of cruciferous vegetable crops. Ann Appl Biol 132:12–13

    Google Scholar 

  • Rashid MH, Ashraf Hossain M, Kashem MA, Shiv K, Rafii MY, Latif MA (2014) Efficacy of combined formulations of fungicides with different modes of action in controlling Botrytis gray mold disease in chickpea. Sci World J 639246:6

    Google Scholar 

  • Rosslenbroich H, Stuebler D (2000) Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Prot 19:557–561

    CAS  Article  Google Scholar 

  • Slawecki RA, Ryan EP, Young DH (2002) Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl Environ Microbiol 68:597–601

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Smith FD, Phipps P, Stipes RJ (1992) Fluazinam: a new fungicide for control of Sclerotinia blight and other soil borne pathogens of peanut. Peanut Sci 19:115–120

    CAS  Article  Google Scholar 

  • Soliman KM, Badeaa RI (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40:1669–1675

    CAS  PubMed  Article  Google Scholar 

  • Sun HY, Wang HC, Chen Y, Li HX, Chen CJ, Zhou MG (2010) Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. Plant Dis 94:551–556

    CAS  Article  Google Scholar 

  • Suzuki K, Sugimoto K, Hayashi H, Komyoji T (1995) Biological mode of action of fluazinam, a new fungicide, for Chinese cabbage clubroot. Ann Phytopathol Soc Jpn 6:395–398

    Article  Google Scholar 

  • Tamura O (2000) Resistance development of gray mold on beans towards fluazinam and relevant countermeasures. Abstracts of 10th Symposium of Research Committee of Fungicide Resistance. Okoyama Japan 7–16

  • Tian J, Ban X, Zeng H, Huang B, He J, Wang Y (2011) In vitro and in vivo activity of essential oil from dill (Anethum graveolens) against fungal spoilage of cherry tomatoes. Food Control 22:1992–1999

    CAS  Article  Google Scholar 

  • van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    PubMed  Article  Google Scholar 

  • Wang H, Yang S, Wang M, Xia H, Li W, Zhang H, Shi J (2013) Sensitivity of Phytophthora parasitica to mandipropamid: in vitro determination of baseline sensitivity and in vivo fungitoxicity. Crop Prot 43:251–255

    CAS  Article  Google Scholar 

  • Washington WS, Shanmuganathan N, Forbes C (1992) Fungicide control of strawberry fruit rots, and the field occurrence of resistance of Botrytis cinerea to iprodione, benomyl and dichlofluanid. Crop Prot 11:355–360

    CAS  Article  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Botrytis cinerea: the cause of gray mold disease. Mol Plant Pathol 8:561–580

    CAS  PubMed  Article  Google Scholar 

  • Zhou MG, Ye ZY, Liu JF (1994) Progress of fungicide resistance research. Nanjing Agric Univ 17:31–38

    CAS  Google Scholar 

  • Ziogas BN, Kalamarakis AE (2001) Phenylpyrrole fungicides: mitotic instability in Aspergillus nidulans and resistance in Botrytis cinerea. J Phytopathol 149:301–308

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Natural Science Foundation of China (31171880 and 31201543) and the Special Fund for Agro-Scientific Research in the Public Interest (201303023 and 201303025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, W., Ren, W., Zhang, Y. et al. Baseline sensitivity of natural populations and characterization of resistant strains of Botrytis cinerea to fluazinam. Australasian Plant Pathol. 44, 375–383 (2015). https://doi.org/10.1007/s13313-015-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-015-0358-3

Keywords

  • Fluazinam
  • Botrytis cinerea
  • Baseline sensitivity
  • Resistance