Bardas GA, Veloukas T, Koutita O, Karaoglanidis GS (2010) Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag Sci 66:967–973
CAS
PubMed
Article
Google Scholar
Chen ZF, Wang WQ, Hzn XY, Zhang XF, Ma ZQ (2010) Review of chemical control of gray mold and fungicide resistance of Botrytis cinerea. J Hebei Agri Sci 14:19–23
Google Scholar
Cheol Soo Y, Eun-Hee J, Rog Y, Kim YBS (2008) Survey of fungicide resistance for chemical control of Botrytis cinerea on paprika. Plant Pathol J 24:447–452
Article
Google Scholar
Duan YB, Ge CY, Liu SM, Chen CJ, Zhou MG (2013) Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic Biochem Phys 106:61–67
CAS
Article
Google Scholar
Faretra F, Pollastro S (1993) Isolation, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana resistant to the phenylpyrrole fungicide CGA 173506. Mycol Res 97:620–624
CAS
Article
Google Scholar
Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000a) Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pestic Biochem Phys 67:125–133
CAS
Article
Google Scholar
Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000b) Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. J Pestic Sci 25:31–36
CAS
Article
Google Scholar
Guo ZJ, Miyoshi H, Komyoji T, Haga T, Fujita T (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-tri-fluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochim Biophys Acta 1056:89–92
CAS
Article
Google Scholar
Hu X, Roberts DP, Jiang M, Zhang Y (2005) Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Appl Microbiol Biotechnol 68:802–807
CAS
PubMed
Article
Google Scholar
Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE (2008) Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Phytopathology 98:205–214
CAS
PubMed
Article
Google Scholar
Komyoji T, Sugimoto K, Mitani S, Matsuo N, Suzuki K (1995) Biological properties of a new fungicide, fluazinam. J Pestic Sci 20:129–135
CAS
Article
Google Scholar
Lemay AV, Bailey JE, Shew BB (2002) Resistance of peanut to Sclerotinia blight and the effect of acibenzolar-S-methyl and fluazinam on disease incidence. Plant Dis 86:1315–1317
CAS
Article
Google Scholar
Leroch M, Plesken C, Weber RW, Kauff F, Scalliet G, Hahn M (2013) Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79:159–167
CAS
PubMed Central
PubMed
Article
Google Scholar
Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58:876–888
CAS
PubMed
Article
Google Scholar
Liu G (2012) The latest registration of a fluazinam suspension concentrate. Pes Mar News 3:31–32
Google Scholar
Ma Z, Michailides TJ (2004) Characterization of iprodione-resistant Alternaria isolates from pistachio in California. Pestic Biochem Phys 80:75–84
CAS
Article
Google Scholar
Magarey RD, Emmett RW, Magarey PA, Franz PR (1993) Evaluation of control of grapevine anthracnose caused by Elsinoe ampelina by pre-infection fungicides. Australas Plant Pathol 22:48–52
Article
Google Scholar
Markoglou AN, Malandrakis AA, Vitoratos AG, Ziogas BN (2006) Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. Eur J Plant Pathol 115:149–162
CAS
Article
Google Scholar
McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245
Article
Google Scholar
Mueller DS, Bradley CA, Nielsen J (2008) Field crop fungicides for the north central United States. Agricultural Experiment Station, Iowa State University. 24–25
Myresiotis CK, Karaoglanidis GS, Tzavella-Klonari K (2007) Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide Fungicides. Plant Dis 91:407–413
CAS
Article
Google Scholar
Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I (2002) A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92:75–80
CAS
PubMed
Article
Google Scholar
Oshima M, Banno S, Okada K, Takeuchi T, Kimura M, Ichiishi A, Fujimura M (2006) Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide-resistant field isolates of Botrytis cinerea. J Gen Plant Pathol 72:65–73
CAS
Article
Google Scholar
Porter IJ, Donald EC, Cross SJ (1998) Field evaluation of fluazinam against clubroot (Plasmodiophora brassicae) of cruciferous vegetable crops. Ann Appl Biol 132:12–13
Google Scholar
Rashid MH, Ashraf Hossain M, Kashem MA, Shiv K, Rafii MY, Latif MA (2014) Efficacy of combined formulations of fungicides with different modes of action in controlling Botrytis gray mold disease in chickpea. Sci World J 639246:6
Google Scholar
Rosslenbroich H, Stuebler D (2000) Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Prot 19:557–561
CAS
Article
Google Scholar
Slawecki RA, Ryan EP, Young DH (2002) Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl Environ Microbiol 68:597–601
CAS
PubMed Central
PubMed
Article
Google Scholar
Smith FD, Phipps P, Stipes RJ (1992) Fluazinam: a new fungicide for control of Sclerotinia blight and other soil borne pathogens of peanut. Peanut Sci 19:115–120
CAS
Article
Google Scholar
Soliman KM, Badeaa RI (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40:1669–1675
CAS
PubMed
Article
Google Scholar
Sun HY, Wang HC, Chen Y, Li HX, Chen CJ, Zhou MG (2010) Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. Plant Dis 94:551–556
CAS
Article
Google Scholar
Suzuki K, Sugimoto K, Hayashi H, Komyoji T (1995) Biological mode of action of fluazinam, a new fungicide, for Chinese cabbage clubroot. Ann Phytopathol Soc Jpn 6:395–398
Article
Google Scholar
Tamura O (2000) Resistance development of gray mold on beans towards fluazinam and relevant countermeasures. Abstracts of 10th Symposium of Research Committee of Fungicide Resistance. Okoyama Japan 7–16
Tian J, Ban X, Zeng H, Huang B, He J, Wang Y (2011) In vitro and in vivo activity of essential oil from dill (Anethum graveolens) against fungal spoilage of cherry tomatoes. Food Control 22:1992–1999
CAS
Article
Google Scholar
van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253
PubMed
Article
Google Scholar
Wang H, Yang S, Wang M, Xia H, Li W, Zhang H, Shi J (2013) Sensitivity of Phytophthora parasitica to mandipropamid: in vitro determination of baseline sensitivity and in vivo fungitoxicity. Crop Prot 43:251–255
CAS
Article
Google Scholar
Washington WS, Shanmuganathan N, Forbes C (1992) Fungicide control of strawberry fruit rots, and the field occurrence of resistance of Botrytis cinerea to iprodione, benomyl and dichlofluanid. Crop Prot 11:355–360
CAS
Article
Google Scholar
Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Botrytis cinerea: the cause of gray mold disease. Mol Plant Pathol 8:561–580
CAS
PubMed
Article
Google Scholar
Zhou MG, Ye ZY, Liu JF (1994) Progress of fungicide resistance research. Nanjing Agric Univ 17:31–38
CAS
Google Scholar
Ziogas BN, Kalamarakis AE (2001) Phenylpyrrole fungicides: mitotic instability in Aspergillus nidulans and resistance in Botrytis cinerea. J Phytopathol 149:301–308
CAS
Article
Google Scholar