Skip to main content
Log in

Proteomic analysis reveals the potential involvement of xylanase from Pyrenophora teres f. teres in net form net blotch disease of barley

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The barley pathogen Pyrenophora teres f. teres (Ptt) produces proteinaceous toxins that contribute to the necrotic symptoms observed during net form net blotch (NFNB) disease. To better understand the relationship between these toxins and virulence, a proteomics approach was used to identify proteins differentially expressed in a more virulent Ptt isolate. Three proteins were identified: an endo-1,4-β-xylanase A (PttXyn11A), a cysteine hydrolase family protein (PttCHFP1) and an unknown (but conserved) secreted protein (PttSP1). PttXyn11A was homologous to a plant cell-wall degrading enzyme but also had a predicted necrosis-inducing region on the enzyme surface. PttCHFP1 showed homology to an isochorismatase, an enzyme proposed to suppress plant defence. Xylanase activity and PttXyn11A expression were greater in more virulent isolates in vitro and during the interaction respectively, suggesting that PttXyn11A plays a role in symptom development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221:137–143

    Article  CAS  PubMed  Google Scholar 

  • Afanasenko OS, Mironenko NV, Filatova OA, Serenius M (2007) Structure of Pyrenophora teres f. teres populations from Leningrad Region and Finland by virulence. Mikol Fitopatol 41:261–268

    Google Scholar 

  • Aizat WM, Able JA, Stangoulis JCR, Able AJ (2013) Proteomic analysis during capsicum ripening reveals differential expression of ACC oxidase isoform 4 and other candidates. Funct Plant Biol 40:1115–1128

    Article  CAS  Google Scholar 

  • Apel PC, Panaccione DG, Holden FR, Walton JD (1993) Cloning and targeted gene disruption of xyl1, a beta-1,4-xylanase gene from the maize pathogen Cochliobolus carbonum. Mol Plant-Microbe Interact 6:467–473

    Article  CAS  PubMed  Google Scholar 

  • Beliën T, Van Campenhout S, Robben J, Volckaert G (2006) Microbial endoxylanases: Effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol Plant-Microbe Interact 19:1072–1081

    Article  PubMed  Google Scholar 

  • Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S (2004)Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    Article  CAS  PubMed  Google Scholar 

  • Brito N, Espino JJ, Gonzalez C (2006) The endo-beta-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant-Microbe Interact 19:25–32

    Article  CAS  PubMed  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  PubMed  Google Scholar 

  • El-Bebany AF, Rampitsch C, Daayf F (2010) Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness. Proteomics 10:289–303

    Article  CAS  PubMed  Google Scholar 

  • El Oirdi M, Abd El Rahman T, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K (2011)Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellouze OE, Loukil S, Marzouki MN (2011) Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2. BMB Rep 44:653–658

    Article  CAS  PubMed  Google Scholar 

  • Ellwood SR, Liu ZH, Syme RA, Lai ZB, Hane JK, Keiper F, Moffat CS, Oliver RP, Friesen TL (2010) A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol 11:1–14

    Article  Google Scholar 

  • Enkerli J, Felix G, Boller T (1999) The enzymatic activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol 121:391–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiegen M, Knogge W (2002) Amino acid alterations in isoforms of the effector protein NIP1 from Rhynchosporium secalis have similar effects on its avirulence- and virulence-associated activities on barley. Physiol Mol Plant Pathol 61:299–302

    Article  CAS  Google Scholar 

  • Furman-Matarasso N, Cohen E, Du Q, Chejanovsky N, Hanania U, Avni A (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the β-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol 121:345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kazan K, Chakraborty S, McDonald BA, Manners JM (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8:1–22

    Article  Google Scholar 

  • Godfrey D, Bohlenius H, Pedersen C, Zhang ZG, Emmersen J, Thordal-Christensen H (2010) Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 11:1–13

    Article  Google Scholar 

  • Gomez-Gomez E, Roncero MIG, Di Pietro A, Hera C (2001) Molecular characterization of a novel endo-beta-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet 40:268–275

    Article  CAS  PubMed  Google Scholar 

  • Hakulinen N, Turunen O, Janis J, Leisola M, Rouvinen J (2003)Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa- Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Rudd JJ (2008) Plant resistance signalling hijacked by a necrotrophic fungal pathogen. Plant Signal Behav 3:993–995

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayashi S, Wu HC (1990) Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471

    Article  CAS  PubMed  Google Scholar 

  • Ismail IA, Godfrey D, Able AJ (2014) Fungal growth, proteinaceous toxins and virulence of Pyrenophora teres f. teres on barley. Australas Plant Pathol doi: 10.1007/s13313-014-0295-6.

  • Jaroszuk-Scisel J, Kurek E (2012) Hydrolysis of fungal and plant cell walls by enzymatic complexes from cultures of Fusarium isolates with different aggressiveness to rye (Secale cereale). Arch Microbiol 194:653–665

    Article  CAS  PubMed  Google Scholar 

  • Khoo KH, Able AJ, Chataway TK, Able JA (2012) Preliminary characterisation of two early meiotic wheat proteins after identification through 2DGE proteomics. Funct Plant Biol 39:222–235

    Article  CAS  Google Scholar 

  • Kim YM, Strelkov SE (2007) Heterologous expression and activity of Ptr ToxB from virulent and avirulent isolates of Pyrenophora tritici repentis. Can J Plant Pathol 29:232–242

    Article  CAS  Google Scholar 

  • Kwon CY, Rasmussen JB, Meinhardt SW (1998) Activity of Ptr ToxA from Pyrenophora tritici repentis requires host metabolism. Physiol Mol Plant Pathol 52:201–212

    Article  CAS  Google Scholar 

  • Lightfoot DJ, Able AJ (2010) Growth of Pyrenophora teres in planta during barley net blotch disease. Australas Plant Pathol 39:499–507

    Article  Google Scholar 

  • Liu Z, Faris JD, Oliver RP, Tan K-C, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB, Friesen TL (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5:e1000581

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Méchin V, Damerval C, Zivy M (2007) Total protein extraction with TCA-Acetone. In ‘Plant Proteomics: Methods and Protocols. Vol. 335.’ (Eds H Thiellement, V Méchin, C Damerval and M Zivy) pp. 1-8. (Humana Press Inc: Totowa, NJ, USA)

  • Morais Do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE (2012) Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 7:e49904

    Article  PubMed Central  PubMed  Google Scholar 

  • Nguyen QB, Itoh K, Van Vu B, Tosa Y, Nakayashiki H (2011) Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol 81:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Noda J, Brito N, Gonzalez C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:1–15

    Article  Google Scholar 

  • Parsons JF, Calabrese K, Eisenstein E, Ladner JE (2003) Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42:5684–5693

    Article  CAS  PubMed  Google Scholar 

  • Rahman TAE, Oirdi ME, Gonzalez-Lamothe R, Bouarab K (2012) Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Mol Plant-Microbe Interact 25:1584–1593

    Article  PubMed  Google Scholar 

  • Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saarelainen R, Paloheimo M, Fagerström R, Suominen P, Nevalainen KMH (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Molec Gen Genet 241:497–503

    Article  CAS  PubMed  Google Scholar 

  • Sacristan S, Garcia-Arenal F (2008) The evolution of virulence and pathogenicity in plant pathogen populations. Mol Plant Pathol 9:369–384

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sarpeleh A, Wallwork H, Catcheside DEA, Tate ME, Able AJ (2007) Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch. Phytopathology 97:907–915

    Article  CAS  PubMed  Google Scholar 

  • Sarpeleh A, Wallwork H, Tate ME, Catcheside DEA, Able AJ (2008) Initial characterisation of phytotoxic proteins isolated from Pyrenophora teres. Physiol Mol Plant Pathol 72:73–79

    Article  CAS  Google Scholar 

  • Seo J, Lee KJ (2004)Post-translational modifications and their biological functions: Proteomic analysis and systematic approaches. J Biochem Mol Biol 37:35–44

    Article  CAS  PubMed  Google Scholar 

  • Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLOS One 3:e2300

    Article  PubMed Central  PubMed  Google Scholar 

  • Tan K, Oliver RP, Solomon PS, Moffat CS (2010) Proteinaceous necrotrophic effectors in fungal virulence. Funct Plant Biol 37:907–912

    Article  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Hugh Wallwork, South Australian Research and Development Institute (SARDI), for providing Ptt isolates and the Grains Research and Development Corporation (GRDC) for supporting this research. IAI was supported by a scholarship from the Iraqi Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Able.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, I.A., Godfrey, D. & Able, A.J. Proteomic analysis reveals the potential involvement of xylanase from Pyrenophora teres f. teres in net form net blotch disease of barley. Australasian Plant Pathol. 43, 715–726 (2014). https://doi.org/10.1007/s13313-014-0314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-014-0314-7

Keywords

Navigation