Skip to main content

Advertisement

Log in

Potential for biological control of the weed Angled Onion (Allium triquetrum) by the fungus Stromatinia cepivora in Australia

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The fungus Stromatinia cepivora (Berk.) Whetzel, which causes white rot of cultivated Allium species, was assessed as a biological control agent for Angled Onion (Allium triquetrum L.), a widespread noxious invasive environmental weed in southern Australia. A. triquetrum showed relatively little genetic diversity, suggesting it was a suitable target for biological control. Genetic analysis of plants from 23 sites in the three main infested Australian states by internal transcribed spacer (ITS) and randomly amplified polymorphic DNA (RAPD) analysis suggested biotypes of A. triquetrum in Australia grouped by state, except for samples from Westernport Bay and Ararat (Victoria). Pathogenicity and virulence of two S. cepivora isolates were assessed on up to 13 A. triquetrum provenances, 6 cultivated Allium species and 9 Australian endemic monocotyledons in test-tube and pot trials. In test-tubes, sclerotia killed plants from all provenances. In pot trials with sclerotia and mycelium, the more pathogenic isolate killed plants from all but one provenance. No A. triquetrum provenance was resistant to S. cepivora, nor were common cultivated Allium species, but common Australian endemic monocotyledons from habitats infested with A. triquetrum showed no disease symptoms 90 days post-inoculation. S. cepivora thus has potential as a biological control agent for A. triquetrum in native bushland in Australia where the risk of it spreading to horticulturally important Allium species is low and can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams PB, Papavizas GC (1971) Effect of inoculum density of Sclerotium cepivorum and some soil environment factors on disease severity. Phytopathology 61:1253–1256

    Article  Google Scholar 

  • Agrios G (2005) Plant pathology, 5th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Australian Pesticides and Veterinary Medicines Authority (2013) Registered products, active constituents and chemical reviews. http://apvma.gov.au/products/index.php

  • Australia’s Virtual Herbarium (2008) Allium triquetrum. http://www.anbg.gov.au/avh/

  • Bansal RK, Broadhurst PG (1992) An evaluation of Allium germplasm for resistance to white rot caused by Sclerotium cepivorum Berk. N Z J Crop Hortic Sci 20:361–365

    Article  Google Scholar 

  • Bay of Plenty Regional Council (2012) Three cornered garlic. Onion weed. http://www.boprc.govt.nz/environment/pests/pest-plants-and-weeds/weed-index/grasses/three-cornered-garlic,-onion-weed/

  • Bayer Crop Science (2013) Folicur® 430 SC. Bayer Crop Science, Hawthorn East, Victoria. http://www.bayercropscience.com.au/resources/uploads/label/file7262.pdf

  • Blood K (2001) Environmental weeds: a field guide for SE Australia. Bloomings Book, Melbourne

    Google Scholar 

  • Booer JR (1946) Further experiments on the control of white rot (Sclerotium cepivorum Berk.) in onion, shallots and leeks. Ann Appl Biol 33:413–419

    Article  CAS  Google Scholar 

  • Bruzzese E, Hasan S (1986) Host specificity of the rust Phragmidium violaceum, a potential biological control agent of European blackberry. Ann Appl Biol 108:585–596

    Article  Google Scholar 

  • Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Aust J Bot 56:279–310

    Article  Google Scholar 

  • Cavan G, Potier V, Moss SR (2000) Genetic diversity of weeds growing in continuous wheat. Weed Res 40:301–310

    Article  Google Scholar 

  • Charles JG (2012) Assessing the non-target impacts of classical biological control agents: is host-testing always necessary? BioControl 57:619–626

    Article  Google Scholar 

  • Chase MW, Reveal JL, Fay MF (2009) A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot J Linn Soc 161:132–136

    Article  Google Scholar 

  • Coley-Smith JR (1960) Studies of the biology of Sclerotium cepivorum Berk IV. Germination of sclerotia. Ann Appl Biol 48:8–18

    Article  Google Scholar 

  • Coley-Smith JR (1979) Survival of pathogenic fungi in soil in the absence of host plants. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic Press, New York, pp 39–57

    Google Scholar 

  • Coley-Smith JR (1986) A comparison of flavour and odour compounds of onion, leek, garlic and Allium fistulosum in relation to germination of sclerotia of Sclerotium cepivorum. Plant Pathol 35:370–376

    Article  CAS  Google Scholar 

  • Coley-Smith JR, Esler G (1983) Infection of cultivars of onion, leek, garlic and Allium fistulosum by Sclerotium cepivorum. Plant Path 32:373–376

    Google Scholar 

  • Coley-Smith JR, Holt RW (1966) The effect of species of Allium on germination in soil of Sclerotium cepivorum Berk. Ann Appl Biol 58:273–278

    Article  Google Scholar 

  • Coley-Smith JR, King JE, Dickinson DJ, Holt RW (1967) Germination of sclerotia of Sclerotium cepivorum Berk. under aseptic conditions. Ann Appl Biol 60:109–115

    Article  Google Scholar 

  • Coley-Smith JR, Mitchell CM, Sansford CE (1990) Long-term survival of sclerotia of Sclerotium cepivorum. Plant Pathol 32:373–376

    Article  Google Scholar 

  • Crowe FJ (2008) White rot. In: Schwaetz JF (ed) Compendium of onion and garlic diseases and pests. APS Press, St. Paul, pp 22–26

    Google Scholar 

  • Dal Santo P (2009) Onions. Strategic agricultural review process. Horticulture Australia. Downloaded from http://www.onionsaustralia.org.au/biosecurity-agrichemical/sarp.htm

  • Dixon RA (ed) (1985) Plant tissue culture: a practical approach. IRL Press, Oxford

    Google Scholar 

  • Donald C, Porter I (2009) Integrated control of clubroot. J Plant Growth Regul 28:289–303

    Article  CAS  Google Scholar 

  • DPI (2008) Victorian Resources Online Invasiveness Assessment - Angled Onion (Allium triquetrum) in Victoria. http://www.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/invasive_angled_onion

  • EPPO (European and Mediterranean Plant Protection Organization) (2011) Guidelines on pest risk analysis. http://archives.eppo.int/EPPOStandards/pra.htm?utm_source=archives.eppo.org&utm_medium=int_redirect

  • Esler G, Coley-Smith JR (1984) Resistance to Sclerotium cepivorum in Allium and other genera. Plant Pathol 33:199–204

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • FRAC (Fungicide Resistance Action Committee) (2009) FRAC code list: Fungicide stored by mode of action (including FRAC code numbering). www.frac.info/frac/publication/anhang/FRAC_CODE_LIST.pdf

  • Gaskin JF, Bon M-C, Cock MJW, Cristofaro M, De Biase A, De Clerck-Floate R, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21

    Article  CAS  Google Scholar 

  • Govaerts R, Kington S, Friesen N, Fritsch R, Snijman DA, Marcucci, R, Silverstone-Sopkin PA, Brullo S (2012) World checklist of selected plant families. Facilitated by the Royal Botanic Gardens. Kew. Search page: http://apps.kew.org/wcsp

  • Government of South Australia (2005) Infestation level of Allium triquetrum. http://www.pir.sa.gov.au/_media/pdf/pirsa_internet/biosecurity/nrm_biosecurity/pest_weed_policies/declared_plants_2/three_corner_garlic_policy.pdf

  • Hirschegger P, Jaske J, Trontelj P, Bohanec B (2010) Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium; Alliaceae). Mol Phylogenet Evol 54:488–497

    Article  CAS  PubMed  Google Scholar 

  • Hussey BMJ, Keighery GJ, Cousens RD, Dodd J, Lioyd SG (1997) Western weeds. A guide to the weeds of Western Australia. The Plant Protection Society of Western Australia (Inc.)

  • King JE, Coley-Smith JR (1969) Production of volatile alkyl sulphides by microbial degradation of synthetic alliin and alliin-like compounds, in relation to germination of sclerotia of Sclerotium cepivorum Berk. Ann Appl Biol 64:303–314

    Article  CAS  Google Scholar 

  • Morin L, Evans KJ (2012) Rubus fruticosus L. aggregate – European blackberry. In: Julien M, McFadyen R, Cullen J (eds) Biological control of weeds in Australia. CSIRO Publishing, Melbourne, pp 499–509

  • Morin L, Scott JK (2012) Asparagus asparagoides (L.) Druce – bridal creeper. In: Julien M, Cullen J, McFadyen R (eds) Biological control of weeds in Australia. CSIRO Publishing, Melbourne, pp 73–82

    Google Scholar 

  • Muyt A (2001) Bush invaders of South-East Australia: a guide to the identification and control of environmental weeds found in South-East Australia. RG & FJ Richardson, Melbourne

    Google Scholar 

  • Onions Australia (2013) Home page. http://www.onionsaustralia.org.au/index.htm

  • Parsons WT, Cuthbertson EG (1992) Noxious weeds of Australia. Inkata Press, Melbourne

    Google Scholar 

  • Persson HA, Gustavsson BA (2001) The extent of clonality and genetic diversity in lingonberry (Vaccinium vitis-idaea L.) revealed by RAPDs and leaf-shape analysis. Mol Ecol 10:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Pritchard GH (1996) Efficacy of herbicides against angled onion in pot trials. In: Shepherd RCH (ed), Proceedings of the 11th Australian Weeds Conference. Weed Science Society of Victoria. pp. 480–484

  • Rickards GK (1977) Prometaphase I and anaphase I in an interchange heterozygote of Allium triquetrum (Liliaceae). Chromosoma (Berl) 64:1–23

    Article  Google Scholar 

  • Snow R (1963) Alcoholic HCl-carmine as a stain for chromosomes in squash preparations. Stain Technol 38:9–13

    CAS  PubMed  Google Scholar 

  • Stevens PF (2013) Angiosperm phylogeny website. Version 13, 28 September 2013. Missouri Botanical Garden, St Louis, USA. http://www.mobot.org/MOBOT/research/APweb/

  • Taiz L, Zeigler E (2002) Plant physiology, 3rd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

  • TeBeest DO (1996) Biological control of weeds with plant pathogens and microbial pesticides. Adv Agron 56:115–137

    Article  Google Scholar 

  • Tehranchian P (2012) Biological control of an Australian noxious weed “Angled Onion” (Allium triquetrum L.) using molecular and traditional approaches. PhD Thesis, RMIT University, Melbourne

  • The International Plant Names Index (2012) Search page. http://www.ipni.org/

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 122:4673–4680

    Article  Google Scholar 

  • van Wilgen BW, Moran VC, Hoffmann JH (2013) Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ Manag 52:531–540

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and amplifications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr James Cunnington and Dr Oscar Villalta of the Department of Primary Industries (DPI) Victoria for the strains of S. cepivora used in these trials, and Dr Janet Anthony and Dr Siegy Krauss, Kings Park and Botanic Garden, Western Australia, for providing A. triquetrum bulbs from there. The authors also wish to thank Ross Field and David Lane, DPI Frankston, for information from a small trial conducted there in the past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Lawrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tehranchian, P., Adair, R.J. & Lawrie, A.C. Potential for biological control of the weed Angled Onion (Allium triquetrum) by the fungus Stromatinia cepivora in Australia. Australasian Plant Pathol. 43, 381–392 (2014). https://doi.org/10.1007/s13313-014-0279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-014-0279-6

Keywords

Navigation