Skip to main content

Genetic linkage map and QTL analysis of partial resistance to black stem in sunflower (Helianthus annuus L.)

Abstract

Black stem, caused by Phoma macdonaldii, is one of the most important diseases of sunflower in the world. Quantitative trait loci (QTLs) implicated in partial resistance to three isolates of P. macdonaldii including MA6, MP6 and MP10 were investigated using F2/F3 population from the cross between sunflower resistant mutant line ‘M6-54-1’ and susceptible inbred line ‘ENSAT-B4’. A genetic linkage map was constructed with 88 amplified fragment length polymorphism (AFLP) and 44 simple sequence repeat (SSR) markers using 101 F2 individuals. The map comprises 17 linkage groups (LGs) with an overall length of 1,490 cM and mean density of one marker per 12.44 cM. Parental lines and their 101 F3 families were evaluated for their resistance to P. macdonalii isolates in controlled conditions in a randomized complete block design with three replications. High genetic variability and transgressive segregation were observed among F3 families for partial resistance to all of three P. macdonaldii isolates. Composite interval mapping analysis revealed 14 putative QTLs, localized on seven linkage groups, with phenotypic variance ranging from 4 to 42 %. The QTL bsrMP6.8.1 was detected as non isolate-specific QTL and the rest of them were ‘isolate-specific’ QTLs. The major QTL on LG8 which was involved in partial resistance to three isolates could be good candidate to introduce resistance to three P. macdonaldii isolates into elite sunflower breeding lines via marker assisted breeding program.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abdi N, Darvishzadeh R, Hatami maleki H, Haddadi P, Sarrafi A (2013) Identification of quantitative trait loci for relative water content and chlorophyll concentration traits in recombinant inbred lines of sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Zemdirbyste 100:159–166

    Article  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Arru L, Francia E, Pecchioni N (2003) Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the ‘Steptoe’ × ‘Morex’ spring barley cross. Theor Appl Genet 106:668–675

    CAS  PubMed  Google Scholar 

  • Bansal VK, Kharbanda PD, Stringam GR, Thiagarajah MR, Tewari JP (1994) A comparison of greenhouse and field screening methods for blackleg resistance in doubled haploid lines of Brassica napus. Plant Dis 78:276–281

    Article  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2002) QTL Cartographer version 1.16. North Carolina State University, Raleigh

    Google Scholar 

  • Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, Tourvieille de Labrouhe D, Nicolas P, Vear F (2004) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 3. Characterisation of QTL involved in resistance to Sclerotinia sclerotiorum and Phoma macdonaldii. Theor Appl Genet 109:865–874

    CAS  PubMed  Article  Google Scholar 

  • Bretagne-Sgnard B, Fouillox G, Chupeau Y (1996) Induced albino mutations as a tool for genetic analysis and cell biology in flax (Linum usitatissimum). J Exp Bot 47:189–194

    Article  Google Scholar 

  • Calenge F, Faure A, Goerre M (2004) A QTL analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    CAS  PubMed  Article  Google Scholar 

  • Carson ML (1991) Relationship between Phoma black stem severity and yield losses in hybrid sunflower. Plant Dis 75:1150–1153

    Article  Google Scholar 

  • Chaerani R, Voorrips RE (2006) Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Gen Plant Pathol 72:335–347

    Article  Google Scholar 

  • Chartrain L, Brading PA, Widdowson JP, Brown JKM (2004) Partial resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94:497–504

    CAS  PubMed  Article  Google Scholar 

  • Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100:2544–2549

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Chen W, Coyne CJ, Peever TL, Muehlbauer FJ (2004) Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53:759–769

    Article  Google Scholar 

  • Cherif M, Harrabi M (1993) Transgressive segregation for resistance to Pyrenophora teres in barley. Plant Pathol 42:617–621

    Article  Google Scholar 

  • Darvishzadeh R, Sarrafi A (2007) Genetic analysis of partial resistance to black stem (Phoma macdonaldii) in sunflower measured by a seedling test. Plant Breed 126:334–336

    CAS  Article  Google Scholar 

  • Darvishzadeh R, Dechamp-Guillaume G, Hewezi T, Sarrafi A (2007a) Genotype-isolate interaction for resistance to black stem in sunflower (Helianthus annuus L.). Plant Pathol 56:654–660

    Article  Google Scholar 

  • Darvishzadeh R, Poormohammad Kiani S, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A (2007b) Quantitative trait loci associated with isolate-specific and isolate-non-specific partial resistance to Phoma macdonaldii isolates in sunflower. Plant Pathol 56:855–861

    CAS  Article  Google Scholar 

  • Davar R, Darvishzadeh R, Majd A, Ghosta Y, Sarrafi A (2010) QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathol Mediterr 49:330–341

    Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multi-population integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    PubMed  Article  Google Scholar 

  • Debaeke P, Pérès A (2003) Influence of sunflower (Helianthus annuus L.) crop management on Phoma black stem (Phoma macdonaldii Boerema). Crop Prot 22:741–752

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1985) Maize DNA minipreps. In: Malberg NY, Messing J., Sussex I (eds), Molecular biology of plants. Cold Spring Harbor, pp 36-37

  • Donald PA, Venette JR, Gulya TJ (1987) Relationship between Phoma macdonaldii and premature death of sunflower. Plant Dis 71:466–468

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1997) Introduction to quantitative genetics. Longman Press, UK

    Google Scholar 

  • Gupta S, Loughman R, Platz GJ, Lance RCM (2003) Resistance in cultivated barleys to Pyrenophora teres f. teres and prospects of its utilisation in marker identification and breeding. Aust J Agric Res 54:1379–1386

    CAS  Article  Google Scholar 

  • Han CU, Lee CH, Jang KS, Choi GJ, Lim HK, Kim JC, Ahn SN, Choi JE, Cha JS, Kim HT, Cho KY, Lee SW (2004) Identification of rice genes induced in a rice blast-resistant mutant. Mol Cells 17:462–468

    CAS  PubMed  Google Scholar 

  • Hu J, Seiler G, Kole C (2010) Genetics, genomics and breeding of sunflower. Routledge, USA

    Book  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, London, UK

    Book  Google Scholar 

  • Kosambi DD (1944) The estimation of a map distance from recombination values. Ann Eugenic 12:172–175

    Article  Google Scholar 

  • Larfeil C (2003) La maladie des taches noires du tournesol causée par Phoma macdonaldii Boerema: variabilité phénotypique et moléculaire - évaluation de la sensibilité des génotypes à la maladie - modalités de l’infection. Thèse de doctorat de l’Institut National Polytechnique de Toulouse, France

    Google Scholar 

  • Luo J, Wu P, Liu Y, Liao F, Liu P, Zhang Y, Huang G (2011) Detection and identification of Phoma macdonaldii in sunflower seeds imported from Argentina. Australas Plant Pathol 40:504–509

    Article  Google Scholar 

  • McNabb WM, van den Berg CGJ, Rimmer SR (1993) Comparison of inoculation methods for selection of plant resistance to Leptosphaeria maculans in Brassica napus. Can J Plant Sci 73:1199–1207

    Article  Google Scholar 

  • Micic Z, Hahn V, Bauer E, Melchinger AE, Knapp SJ, Tang S, Schön CC (2005a) Identification and validation of QTL for Sclerotinia mid-stalk rot resistance in sunflower by selective genotyping. Theor Appl Genet 111:233–242

    CAS  PubMed  Article  Google Scholar 

  • Micic Z, Hahn V, Bauer E, Schon CC, Melchinger AE (2005b) QTL mapping of resistance to Sclerotinia mid-stalk rot in RIL of sunflower population NDBLOSsel × CM625. Theor Appl Genet 110:1490–1498

    CAS  PubMed  Article  Google Scholar 

  • Missiaggia AA, Piacezzi AL, Grattapaglia D (2005) Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Genomes 1:79–84

    Article  Google Scholar 

  • Paniego N, Echaide M, Munoz M, Fernandez L, Torales S, Faccio P, Fuxan I, Crrera M, Zandomeni R, Syarez EY, Esteban Hopp H (2002) Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome 45:34–43

    CAS  PubMed  Article  Google Scholar 

  • Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance: a new view including horizontal and vertical resistance in plants. Euphytica 26:5–21

    Article  Google Scholar 

  • Penaud A (1996) Phoma du tournesol: Recherche des époques de contamination et mise au point de la protection fongicide. In: proceedings of the 14th International Sunflower Conference. Beijing, China

  • Plaisted RL, Thurston HD, Brodie BB, Hoopes RW (1984) Selecting for resistance to diseases in early generations. Am J Potato Res 61:395–403

    Article  Google Scholar 

  • Poormohammad Kiani S, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787

    Article  Google Scholar 

  • Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99:877–884

    CAS  Article  Google Scholar 

  • Rachid Al-Chaarani G, Roustaee A, Gentzbittel L, Mokrani L, Barrault G, Dechamp-Guillaume G, Sarrafi A (2002) A QTL analysis of sunflower partial resistance to downy mildew (Plasmopara halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs). Theor Appl Genet 104:490–496

    PubMed  Article  Google Scholar 

  • Rachid Al-Chaarani G, Gentzbittel L, Huang XQ, Sarrafi A (2004) Genotypic variation and identification of QTLs for agronomic traits using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.). Theor Appl Genet 109:1353–1360

    PubMed  Article  Google Scholar 

  • Rocherieux J, Glory P, Giboulot A (2004) Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet 108:1555–1563

    CAS  PubMed  Article  Google Scholar 

  • Roustaee A, Barrault G, Dechamps-Guillaume G, Lesigne P, Sarrafi A (2000a) Inheritance of partial resistance to black stem (Phoma macdonaldii) in sunflower. Plant Pathol 49:396–401

    Article  Google Scholar 

  • Roustaee A, Costes D, Dechamp-Guillaume G, Barrault G (2000b) Phenotypic variability of Leptosphaeria lindquistiii (Phoma macdonaldii) a fungal pathogen of sunflower. Plant Pathol 49:227–234

    Article  Google Scholar 

  • Sarrafi A, Kayyal H, Rachid Al-Chaarani G, Cantin F, Chaline AS, Durielle AS (2000) Inheritance of organogenesis parameters in cotyledons of sunflower (Heliantus annuus L). J Genet Breed 54:227–231

    Google Scholar 

  • Talukder ZI, Tharreau D, Price AH (2004) Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol 162:197–209

    CAS  Article  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    CAS  PubMed  Article  Google Scholar 

  • Thomas WTB, Powell W, Waugh R (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  PubMed  Article  Google Scholar 

  • Zhu S, Leonard KJ, Kaeppler HF (2003) Quantitative trait loci associated with seedling resistance to isolates of Puccinia coronata in oat. Phytopathology 93:860–866

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. L. Gentzbittel, Laboratoire Symbiose et Pathologie des Plantes, INP/ENSAT, Castanet-Tolosan, France, for his statistical advice. Prof. Dr. G. Dechamp-Guillaume, Laboratoire Symbiose et Pathologie des Plantes, INP/ENSAT, Castanet-Tolosan, France, is kindly acknowledged for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Hatami Maleki.

Additional information

This work was carried out in Laboratoire de Biotechnologie et Amélioration des Plantes (BAP), INP-ENSAT, Castanet-Tolosan, France

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hatami Maleki, H., Darvishzadeh, R. & Sarrafi, A. Genetic linkage map and QTL analysis of partial resistance to black stem in sunflower (Helianthus annuus L.). Australasian Plant Pathol. 43, 205–213 (2014). https://doi.org/10.1007/s13313-013-0265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-013-0265-4

Keywords

  • Sunflower
  • Black stem
  • P. macdonaldii
  • Genetic linkage map
  • QTL mapping