Skip to main content
Log in

Genetic variation for resistance to Mycosphaerella leaf disease and Eucalyptus rust on Eucalyptus globulus in Uruguay

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Over the last 5 years foliar diseases had caused devastating damages in young plantations of Eucalyptus globulus in Uruguay. The sustainability of this species, the most important in the country with more than 270,000 ha of commercial plantations, depends on the rapid development of resistant genetic stock. The genetic variation in resistance of juvenile foliage to diseases and in the onset to adult foliage were examined in a field trial of E. globulus naturally infected by Mycosphaerella leaf disease (Mycosphaerella spp. and Teratosphaeria spp.) and Eucalyptus rust (Puccinia psidii). The genetic material included 226 open pollinated seed lots from 16 provenances of Australia, Chile and Uruguay. Disease severity (% of leaf spots and % defoliation) was assessed 8 months after planting and precocity of phase change (% of adult foliage) at 20 months. Tree growth and survival were evaluated every 2 years up to the ninth year. Differences in disease severity and in precocity of phase change were significant among countries of origin and provenances. Within provenances, the narrow-sense individual tree heritabilities for leaf spot severity (0.37), defoliation (0.41) and proportion of adult foliage (0.40) were higher than those obtained for tree growth (0.19 to 0.33) and similar to those obtained for survival (0.33 to 0.45). Genetic correlations between disease severity and growth traits were negative (−0.20 to −0.44) and were also negative between disease severity and survival (−0.28 to −0.51). There were positive genetic correlations between precocity of phase change and growth traits (0.34 to 0.41) and between precocity of phase change and survival (0.29 to 0.37). Our results demonstrate that selection for low disease severity in the first year and for high proportion of adult foliage in the second year are feasible in order to obtain genetic material for sites at risk of infection of both Mycosphaerella leaf disease and Eucalyptus rust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfenas AC, Zauza EAV, Assis TF (2003) First record of Puccinia psidii on Eucalyptus globulus and E. viminalis in Brazil. Australas Plant Pathol 32:325–326

    Article  Google Scholar 

  • Alfenas AC, Zauza EA, Mafia RG, Assis TF (2004) Clonagem e Doencas do Eucalipto, 4ath edn. Editora UFV, Vicosa, MG, Brazil, 500 pp

    Google Scholar 

  • Balmelli G, Marroni V, Altier N, García R (2004) Potencial del mejoramiento genético para el manejo de enfermedades en Eucalyptus globulus. INIA Serie Técnica 143, Editorial Prontográfica S.A., Montevideo, Uruguay, p 43

  • Balmelli G, Martínez G, Simeto S, Torres D, Pérez CA, Fros D, Bentancur O (2009) Daño foliar causado por enfermedades y plagas en plantaciones jóvenes de Eucalyptus globulus en Uruguay. Poster in XIII Congreso Forestal Mundial. 18–23 Octubre. Buenos Aires, Argentina

  • Balmelli G, Simeto S, Martínez G, Torres D, Pérez C, Bentancur O (2011) Incidence and severity of pests and diseases on young plantations of Eucalyptus globulus in Uruguay. In: IUFRO Forest Protection Joint Meeting: pathogens, insects and their associations affecting forestry worldwide. 8–11 November. Colonia del Sacramento, Uruguay

  • Balmelli G, Simeto S, Altier N, Marroni V, Diez JJ (2013) Long term losses caused by foliar diseases on growth and survival of Eucalyptus globulus in Uruguay. New For 44:249–263

    Article  Google Scholar 

  • Barber PA, Carnegie AJ, Burgess TI, Keane PJ (2008) Leaf diseases caused by Mycosphaerella species in Eucalyptus globulus plantations and nearby native forest in the Green Triangle Region of southern Australia. Australas Plant Pathol 37:472–481

    Article  Google Scholar 

  • Callister AN, England N, Collins S (2013) Predicted genetic gain and realized gain in stand volume of Eucalyptus globulus. Tree Genet Genomes 9:361–375

    Google Scholar 

  • Carnegie AJ, Ades PK (2005) Variation in Eucalyptus globulus Labill. and E. nitens Dean and Maiden in susceptibility of adult foliage to disease caused by Mycosphaerella cryptica (Cooke) Hansf. Silvae Genet 54:174–184

    Google Scholar 

  • Carnegie AJ, Keane PJ, Ades PK, Smith IW (1994) Variation in susceptibility of Eucalyptus globulus provenances to Mycosphaerella leaf disease. Can J For Res 24:1751–1757

    Article  Google Scholar 

  • Carnegie AJ, Ades PK, Keane PJ, Smith IW (1998) Mycosphaerella disease of juvenile foliage in a eucalypts species and provenance trial in Victoria, Australia. Aust For 61:190–194

    Article  Google Scholar 

  • Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466

    Article  Google Scholar 

  • Costa e Silva J, Potts BM, Tilyard P (2013a) Stability of genetic effects across clonal and seedling populations of Eucalyptus globulus with common parentage. For Ecol Manag 291:427–435

    Article  Google Scholar 

  • Costa e Silva J, Potts BM, Bijma P, Kerr RJ, Pilbeam DJ (2013b) Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree. New Phytol 197:631–641

    Article  PubMed  Google Scholar 

  • Cotterill PP (1986) Genetic gains expected from alternative breeding strategies including simple low cost options. Silvae Genet 35:212–223

    Google Scholar 

  • Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Article  Google Scholar 

  • Crous PW (1998) Mycosphaerella spp. and their anamorphs associated with leaf spot diseases of Eucalyptus. The American Phytopathological Society, St Paul, MN, USA

    Google Scholar 

  • Dungey HS, Potts BM, Carnegie AJ, Ades PK (1997) Mycosphaerella leaf disease—genetic variation in damage to Eucalyptus nitens, Eucalyptus globulus, and their F-1 hybrid. Can J For Res 27:750–759

    Article  Google Scholar 

  • Eldridge KG, Davidson J, Hardwood CE, Van Wyk G (1994) Eucalypt domestication and breeding. Oxford University Press, New York, p 288

  • Ferreira FA (1983) Ferrugem do Eucalipto. Rev Arvore 7:91–109

    Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml User Guide Release 3.0. VSN International Ltd, Hemel Hempstead, UK

    Google Scholar 

  • Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: A threat to the Australian environment and economy—A review. Australas Plant Pathol 36:1–16

    Article  Google Scholar 

  • Grgurinovic CA, Walsh D, Macbeth F (2006) Eucalyptus rust caused by Puccinia psidii and the threat it poses to Australia. EPPO Bull 36:486–489

    Article  Google Scholar 

  • Hamilton MG, Tilyard PA, Williams DR, Vaillancourt RE, Wardlaw TJ, Potts BM (2011) The genetic variation in the timing of heteroblastic transition in Eucalyptus globulus is stable across environments. Aust J Bot 59:170–175

    Article  Google Scholar 

  • Hamilton MG, Williams DR, Tilyard PA, Pinkard EA, Wardlaw TJ, Glen M, Vaillancourt RE, Potts BM (2013) A latitudinal cline in disease resistance of a host tree. Heredity 110:372–379

    Article  CAS  PubMed  Google Scholar 

  • Hardner CM, Potts BM (1995) Inbreeding depression and changes in variation after selfing Eucalyptus globulus subsp. globulus. Silvae Genet 44:46–54

    Google Scholar 

  • Hodge GR, Volker PW, Potts BM, Owen JV (1996) A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theor Appl Genet 92:53–63

    Article  CAS  PubMed  Google Scholar 

  • Hunter GC, Crous PW, Carnegie AJ, Wingfield MJ (2009) Teratosphaeria nubilosa, a serious leaf disease pathogen of Eucalyptus spp. in native and introduced areas. Mol Plant Pathol 10:1–14

    Article  CAS  PubMed  Google Scholar 

  • Hunter GC, Crous PW, Carnegie AJ, Burgess TI, Wingfield MJ (2011) Mycosphaerella and Teratosphaeria disease of Eucalyptus; easily confused and with serious consequences. Fungal Divers 50:145–166

    Article  Google Scholar 

  • Jordan GJ, Potts BM, Wiltshire R (1999) Strong, independent quantitative genetic control of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian Blue Gum). Heredity 83:179–187

    Article  PubMed  Google Scholar 

  • Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE (2000) Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Aust J Bot 48:561–567

    Article  Google Scholar 

  • Le Roux JJ, Van Staden J (1991) Micropropagation and tissue culture of Eucalyptus—a review. Tree Physiol 9:435–477

    Article  PubMed  Google Scholar 

  • Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid PE (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. For Genet 9:217–231

    Google Scholar 

  • Lundquist JE, Purnell RC (1987) Effects of Mycosphaerella leaf spot on growth of Eucalyptus nitens. Plant Dis 71:1025–1029

    Article  Google Scholar 

  • Methol R (2006) SAG globulus: sistema de apoyo a la gestión de plantaciones de Eucalyptus globulus. INIA Serie Técnica 158, Editorial Hemisferio Sur S.R.L., Montevideo, Uruguay, p 34

  • MGAP (2012) Recurso Forestal: bosques plantados registrados. Ministerio de Agricultura Ganadería y Pesca de la República Oriental del Uruguay, Éstadísticas y Mercado. Available at: http://www.mgap.gub.uy. Accessed 05 Nov 2012

  • Milgate AW, Potts BM, Joyce K, Mohammed C, Vaillancourt RE (2005) Genetic variation in Eucalyptus globulus for susceptibility to Mycosphaerella nubilosa and its association with tree growth. Australas Plant Pathol 34:11–18

    Article  Google Scholar 

  • Mohammed C, Wardlaw T, Smith A, Pinkard E, Battaglia M, Glen M, Tommerup I, Potts B, Vaillancourt R (2003) Mycosphaerella leaf diseases of temperate eucalypts around the southern Pacific rim. N Z J For Sci 33:362–372

    Google Scholar 

  • Park RF, Keane PJ, Wingfield MJ, Crous PW (2000) Fungal diseases of eucalypt foliage. In: Keane PJ, Kile GA, Podger FD, Brown BN (eds) Diseases and Pathogens of Eucalypts. CSIRO Publishing, Melbourne, Australia, pp 153–239

    Google Scholar 

  • Pérez CA, Wingfield MJ, Altier NA, Blanchette RA (2009a) Mycosphaerellaceae and Theratosphaeraceae associated with Eucalyptus leaf diseases and stem cankers in Uruguay. For Pathol 39:349–360

    Article  Google Scholar 

  • Pérez G, Hunter G, Slippers B, Pérez CA, Wingfield BD, Wingfield MJ (2009b) Teratosphaeria (Mycosphaerella) nubilosa, the causal agent of Mycosphaerella leaf disease (MLD), recently introduced into Uruguay. Eur J Plant Pathol 125:109–118

    Article  Google Scholar 

  • Pérez CA, Wingfield MJ, Altier NA, Simeto S, Blanchette RA (2011) Puccinia psidii infecting cultivated Eucalyptus and native myrtaceae in Uruguay. Mycol Prog 10:273–282

    Article  Google Scholar 

  • Petraglia C, Dell’Acqua M (2006) Actualización de la cartografía forestal del Uruguay con imágenes del año 2004. In: XIII Simpósio Brasileiro de Sensoriamento Remoto. Florianópolis, Brasil, p 1801–1808

  • Reinoso C (1992) Variation in Eucalyptus globulus in susceptibility to Mycosphaerella leaf diseases. M.Sc. thesis, The University of Melbourne, Australia, p 81

  • SAS Institute (1997) SAS/STAT software: changes and enhancements through Release 6.12. SAS Institute, Cary, NC

    Google Scholar 

  • Shelbourne CJA (1992) Genetic gains from different kinds of breeding population and seed or plant production population. South Afr For J 160:49–65

    Google Scholar 

  • Simeto S, Balmelli G, Martínez G, Torres D, González P, Fros D, Bentancur O, Pérez CA (2010) Relevamiento sanitario de Eucalyptus spp. en el Sureste y Litoral Oeste del país. INIA Serie Actividades de Difusión 629:41–51

    Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Tejedor C (2007) Selección de una variedad clonal de Eucalyptus globulus spp. globulus tolerante a la enfermedad foliar Mycosphaerella sp. en el Norte de España. Cent Investig Doc Eucalipto (CIDEU) 3:57–66

    Google Scholar 

  • Telechea N, Rolfo M, Coutinho TA, Wingfield MJ (2003) Puccinia psidii on Eucalyptus globulus in Uruguay. Plant Pathol 52:427

    Article  Google Scholar 

  • Tibbits WN, Boomsma DB, Jarvis S (1997) Distribution, biology, genetics and improvement programs for Eucalyptus globulus and E. nitens around the world. In: Proc. 24th Southern Forest Tree Improvement Conference. Orlando, USA, p 81–95

  • Volker PW, Dean CA, Tibbits WN, Ravenwood IC (1990) Genetic parameters and gains expected from selection in Eucalyptus globulus in Tasmania. Silvae Genet 39:18–21

    Google Scholar 

  • Wingfield MJ (1999) Report on diseases of plantation Eucalyptus in Uruguay. Dirección Forestal y Sociedad de Productores Forestales. Montevideo, Uruguay, p 28

  • Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: Growing threats to plantation productivity. South For 70:139–144

    Google Scholar 

  • Xavier AA, Sanfuentes EV, Junghans DT, Alfenas AC (2007) Resistência de Eucalyptus globulus e Eucalyptus nitens a ferrugem (Puccinia psidii). Rev Arvore 31:731–735

    Article  Google Scholar 

Download references

Acknowledgments

We thank Redalco forestry enterprise, especially Marcelo Fredes, for providing the location, and for performing the soil preparation and maintenance of the trial, and to Carlos Pérez and Guillermo Pérez for comments on the manuscript. The study was partially funded by a grant (Programa de Formación del Sistema de los INIA de Iberoamérica) awarded to the first author for the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Balmelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balmelli, G., Simeto, S., Marroni, V. et al. Genetic variation for resistance to Mycosphaerella leaf disease and Eucalyptus rust on Eucalyptus globulus in Uruguay. Australasian Plant Pathol. 43, 97–107 (2014). https://doi.org/10.1007/s13313-013-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-013-0254-7

Keywords

Navigation