Skip to main content
Log in

Effects of different rates of Gaeumannomyces graminis var. tritici inoculum for detecting take-all suppression in soils

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The introduction of Gaeumannomyces graminis var. tritici (Ggt) inoculum into soils to screen for take-all suppression has been widely used in field and laboratory studies. However, the amounts of Ggt inoculum reported have varied greatly. The effects of adding Ggt in sand/maizemeal to three soils of different cropping history at the rates of 0, 0.2, 0.5, 1 and 4 % (w/w) were investigated in a pot assay using wheat plants. The three soils had previously been cropped with ryegrass for 5 years, wheat for 8 years, and wheat for 2 years. The soils represented a putative non-suppressive, non-wheat soil; a suppressive wheat soil; and a non-suppressive wheat soil, each containing natural background concentrations of Ggt DNA of 0, 200 and 1126 pg g−1 soil, respectively. Root assessments of wheat plants after 4 weeks growth showed that 4 % of Ggt reduced root growth slightly, decreased water uptake of the wheat plants and effectively differentiated the suppressive activity of the soils (P < 0.01, take-all incidences of 83, 69 and 81 %, respectively), and was therefore suitable for investigating take-all suppression in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade OA, Mathre DE, Sands DC (1994a) Natural suppression of take-all disease of wheat in Montana soils. Plant Soil 164(1):9–18. doi:10.1007/BF00010105

    Article  CAS  Google Scholar 

  • Andrade OA, Mathre DE, Sands DC (1994b) Suppression of Gaeumannomyces graminis var. tritici in Montana soils and its transferability between soils. Soil Biol Biochem 26(3):397–402. doi:10.1016/0038-0717(94)90289-5

    Article  CAS  Google Scholar 

  • Asher MJC (1972) Effect of Ophiobolus graminis infection on the assimilation and distribution of 14C in wheat. Ann Appl Biol 72(2):161–167. doi:10.1111/j.1744-7348.1972.tb01281.x

    Article  Google Scholar 

  • Ayres PG (1978) Water relations of diseased plants. In: Kozlowski TT (ed) Water deficits and plant growth Volume V: Water and plant disease. Academic, New York, pp 1–60

    Google Scholar 

  • Bithell SL, McKay A, Butler RC, Herdina, Ophel-Keller K, Hartley D, Cromey MG (2012) Predicting take-all severity in second-year wheat using soil DNA concentrations of Gaeumannomyces graminis var. tritici determined with qPCR. Plant Dis 96(3):443–451. doi:10.1094/pdis-05-11-0445

    Article  CAS  Google Scholar 

  • Cook RJ (2003) Take-all of wheat. Physiol Mol Plant Pathol 62(2):73–86. doi:10.1016/S0885-5765(03)00042-0

    Article  Google Scholar 

  • Cunningham PC (1981) Isolation and culture. In: Asher MJC, Shipton PJ (eds) Biology and control of take-all. Academic, London, pp 103–123

    Google Scholar 

  • Gutteridge RJ, Zhang JP, Jenkyn JF, Bateman GL (2005) Survival and multiplication of Gaeumannomyces graminis var. tritici (the wheat take-all fungus) and related fungi on different wild and cultivated grasses. Appl Soil Ecol 29(2):143–154. doi:10.1016/j.apsoil.2004.11.003

    Article  Google Scholar 

  • Hiddink GA, Termorshuizen AJ, Raaijmakers JM, van Bruggen AHC (2005) Effect of mixed and single crops on disease suppressiveness of soils. Phytopathology 95(11):1325–1332. doi:10.1094/PHYTO-95-1325

    Article  PubMed  CAS  Google Scholar 

  • Hollins TW, Scott PR, Gregory RS (1986) The relative resistance of wheat, rye and triticale to take-all caused by Gaeumannomyces graminis. Plant Pathol 35(1):93–100. doi:10.1111/j.1365-3059.1986.tb01986.x

    Article  Google Scholar 

  • Hornby D (1981) Inoculum. In: Asher MJC, Shipton PJ (eds) Biology and control of take-all. Academic Press Inc. (London) Ltd, London, pp 271–293

    Google Scholar 

  • Hornby D, Bateman GL, Gutteridge RJ, Ward E, Yarham DJ (1998) Take-all disease of cereals: A regional perspective. CAB International, UK

    Google Scholar 

  • Kirk JJ, Deacon JW (1987) Control of the take-all fungus by Microdochium bolleyi, and interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant Soil 98(2):231–237. doi:10.1007/BF02374826

    Article  Google Scholar 

  • Klute A (1986) Water retention: laboratory methods. In: Klute A (ed) Methods of soil analysis part I: physical and mineralogical methods, 2nd edn. American Society of Agronomy, Inc, Madison, pp 635–662

    Google Scholar 

  • Lester E, Shipton PJ (1967) A technique for studying inhibition of the parasitic activity of Ophiobolus graminis (Sacc.) in field soils. Plant Pathol 16(3):121–123. doi:10.1111/j.1365-3059.1967.tb00385.x

    Article  Google Scholar 

  • McSpadden Gardener BB, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67(10):4414–4425. doi:10.1128/AEM.67.10.4414-4425.2001

    Article  PubMed  CAS  Google Scholar 

  • Ophel-Keller K, McKay A, Hartley D, Herdina CJ (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Aust Plant Pathol 37(3):243–253. doi:10.1071/Ap08029

    Article  CAS  Google Scholar 

  • Pillinger C, Paveley N, Foulkes MJ, Spink J (2005) Explaining variation in the effects of take-all (Gaeumannomyces graminis var. tritici) on nitrogen and water uptake by winter wheat. Plant Pathol 54(4):491–501. doi:10.1111/j.1365-3059.2005.01229.x

    Article  Google Scholar 

  • Rovira AD, Wildermuth GB (1981) The nature and mechanisms of suppression. In: Asher MJC, Shipton PJ (eds) Biology and control of take-all, vol 251–269. Academic Press Inc. (London) Ltd, London, pp 385–415

    Google Scholar 

  • Shipton PJ, Cook RJ, Sitton JW (1973) Occurrence and transfer of a biological factor in soil that suppresses take-all of wheat in Eastern Washington. Phytopathology 63(4):511–517

    Article  CAS  Google Scholar 

  • Simon A, Rovira AD (1985) New inoculation technique for Gaeumannomyces graminis var. tritici to measure dose response and resistance in wheat in field experiments. In: Parker CA, Rovira AD, Moore KJ, Wong PTW (eds) Ecology and management of soilborne plant pathogens. American Phytopathological Society, St. Paul, pp 183–184

    Google Scholar 

  • Simon A, Rovira AD, Foster RC (1987) Inocula of Gaeumannomyces graminis var. tritici for field and glasshouse studies. Soil Biol Biochem 19(4):363–370. doi:10.1016/0038-0717(87)90024-1

    Article  Google Scholar 

  • van Elsas JD, Smalla K, Lilley AK, Bailey MJ (2002) Methods for sampling soil microbes. In: Hurst CJ, Crawford RL, Knudsen GR, McLnerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. ASM Press, USA, pp 505–515

    Google Scholar 

  • Weller DM, Zhang BX, Cook RJ (1985) Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Dis 69(8):710–713

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. doi:10.1146/annurev.phyto.40.030402.110010

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth GB (1980) Suppression of take-all by some Australian soils. Aust J Agric Res 31(2):251–258. doi:10.1071/AR9800251

    Article  Google Scholar 

  • Wildermuth GB (1982a) Soils suppressive to Gaeumannomyces graminis var. tritici: effects on other fungi. Soil Biol Biochem 14(6):561–567. doi:10.1016/0038-0717(82)90088-8

    Article  Google Scholar 

  • Wildermuth GB (1982b) Soils suppressive to Gaeumannomyces graminis var. tritici: induction by other fungi. Soil Biol Biochem 14(6):569–573. doi:10.1016/0038-0717(82)90088-8

    Article  Google Scholar 

  • Wildermuth GB, Rovira AD (1977) Hyphal density as a measure of suppression of Gaeumannomyces graminis var. tritici on wheat roots. Soil Biol Biochem 9(3):203–205. doi:10.1016/0038-0717(77)90076-1

    Article  Google Scholar 

  • Wilkinson HT, Cook RJ, Alldredge JR (1985) Relation of inoculum size and concentration to infection of wheat roots by Gaeumannomyces graminis var. tritici. Phytopathology 75(1):98–103

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by Ministry of Business, Innovation and Employment (Contract no: LINX0804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Chng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chng, S.F., Stewart, A., Cromey, M.G. et al. Effects of different rates of Gaeumannomyces graminis var. tritici inoculum for detecting take-all suppression in soils. Australasian Plant Pathol. 42, 103–109 (2013). https://doi.org/10.1007/s13313-012-0166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-012-0166-y

Keywords

Navigation