Skip to main content

Stagonosporopsis spp. associated with ray blight disease of Asteraceae

Abstract

Ray blight disease of pyrethrum (Tanacetum cinerariifolium) is shown to be caused by more than one species of Stagonosporopsis. The Australian pathogen, previously identified as Phoma ligulicola var. inoxydabilis, represents a new species described as Stagonosporopsis tanaceti based on morphological characters and a five-gene phylogeny employing partial sequences of the actin, translation elongation factor 1-alpha, internal transcribed spacers and 5.8S of the nrDNA, 28S large subunit and beta-tubulin 2 gene sequences. Furthermore, the two varieties of Stagonosporopsis ligulicola are elevated to species level as S. chrysanthemi and S. inoxydabilis based on their DNA phylogeny and morphology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abeln ECA, Stax AM, De Gruyter J, Van der Aa HA (2002) Genetic differentiation of Phoma exigua varieties by means of AFLP fingerprints. Mycol Res 106:419–427

    Article  CAS  Google Scholar 

  • Aveskamp MM, De Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31:1–18

    Google Scholar 

  • Aveskamp MM, Verkley GJM, De Gruyter J, Murace MA, Perelló A et al (2009a) DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101:363–382

    PubMed  Article  CAS  Google Scholar 

  • Aveskamp MM, Woudenberg JHC, De Gruyter J, Turco E, Groenewald JZ, Crous PW (2009b) Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Mol Plant Pathol 10:403–414

    PubMed  Article  CAS  Google Scholar 

  • Aveskamp MM, De Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of Didymellaceae: a polyphasic approach to characterise Phoma and related Pleosporalean genera. Stud Mycol 65:1–160

    PubMed  Article  CAS  Google Scholar 

  • Baker KF, Dimock AW, Davis LH (1949) Life history and control of the ascochyta ray blight of chrysanthemum. Phytopathology 39:789–805

    Google Scholar 

  • Bhat BK, Menary RC (1984) Pyrethrum production in Australia: its past and present potential. J Aust Inst Agric Sci 494:189–192

    Google Scholar 

  • Boerema GH (1976) Phoma species studied in culture by Dr R.W.G. Dennis. Trans Br Mycol Soc 67:289–319

    Article  Google Scholar 

  • Boerema GH, Bollen GJ (1975) Conidiogenesis and conidial septation as different criteria between Phoma and Ascochyta. Persoonia 8:111–144

    Google Scholar 

  • Boerema GH, Howeler LH (1967) Phoma exigua Desm. and its varieties. Persoonia 5:15–28

    Google Scholar 

  • Boerema GH, Noordeloos ME (1992) Contributions towards a monograph of Phoma (Coelomycetes)—I 1. Section Phoma: taxa with very small conidia in vitro. Persoonia 15:71–92

    Google Scholar 

  • Boerema GH, Van Kesteren HA (1974) Enkele bijzondere schimmelaantastingen V. (Mycologishe waarnemingen no. 17). Gewasbescherming 5:119–125

    Google Scholar 

  • Boerema GH, Verhoeven AA (1979) Check-list for scientific names of common parasitic fungi. Series 2c: fungi on field crops: pulse (legumes), and forage crops (herbage legumes). Neth J Plant Pathol 85:151–185

    Article  Google Scholar 

  • Boerema GH, De Gruyter J, Noordeloos ME (1997) Contributions towards a monograph of Phoma (Coelomycetes)—IV Section Heterospora: taxa with large sized conidial dimorphs, in vivo sometimes as Stagonosporopsis synanamorphs. Persoonia 16:335–371

    Google Scholar 

  • Boerema GH, De Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual: differentiation of specific and intra-specific taxa in culture. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  • Chesters CGC, Blakeman JP (1967) Host range and virulence of Mycosphaerella ligulicola. Ann Appl Biol 60:385–390

    Article  Google Scholar 

  • Clements FE, Shear CL (1931) The genera of fungi. Wilson, New York

    Google Scholar 

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009) Fungal biodiversity. CBS laboratory manual series1. Centraalbureau voor Schimmelcultures, The Netherlands

    Google Scholar 

  • Cullen DW, Toth IK, Boonham N, Walsh K, Barker I, Lees AK (2007) Development and validation of conventional and quantitative polymerase chain reaction assays for the detection of storage rot potato pathogens, Phytophthora erythroseptica, Pythium ultimum, Phoma foveata. J Phytopathol 155:309–315

    Article  CAS  Google Scholar 

  • De Gruyter J, Boerema GH, Van der Aa HA (2002) Contributions towards a monograph of Phoma (Coelomycetes)—VI. 2. Section Phyllostictoides: outline of its taxa. Persoonia 18:1–53

    Google Scholar 

  • De Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 133:508–519

    Article  Google Scholar 

  • De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102:1066–1081

    PubMed  Article  Google Scholar 

  • De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2012) Rediposition of Phoma-like anamorphs in Pleosporales. Stud Mycol 75:1–36

    Google Scholar 

  • De Hoog GS, Gerrits Van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189

    PubMed  Article  Google Scholar 

  • Diedicke H (1912) Die Abteilung Hyalodidymae der Sphaerioideen. Ann Mycol 10:135–152

    Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al (2011) Geneious v5.4 Available from <www.geneious.com>

  • EPPO (1980) Data sheets on quarantine organisms List A2. Didymella chrysanthemi (Tassi) Garibaldi & Gullino. Paris. rue Le Notre

  • EPPO (1982) Datasheets on quarantine organisms Set 5 List A2 (quarantine organisms present in some EPPO countries). EPPO Bull 12:41–46

    Article  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Garibaldi A, Gullino G (1971) Brevi notizie sulla presenza in Italia dell’ascochitosi del crisantemo. L’Agricoltura Italiana 71:21–290

    Google Scholar 

  • Grdiša M, Karovic-Stanko K, Kolak I, Satovic Z (2009) Morphological and biochemical diversity of Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.). Agric Conspec Sci 74:73–80

    Google Scholar 

  • Greene HC (1961) Notes on Wisconsin parasitic fungi. XXVII. Trans Wis Acad Sci Arts Lett 50:141–161

    Google Scholar 

  • Jones S (2009) Characterisation of cultural, biological and molecular variability of Phoma ligulicola isolates associated with ray blight disease of pyrethrum and chrysanthemum. PhD thesis, University of Tasmania, Australia

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    PubMed  Article  CAS  Google Scholar 

  • Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol 49:628–651

    PubMed  Article  CAS  Google Scholar 

  • Müller E, Von Arx JA (1962) Die Gattungen der didymosporen Pyrenomyceten. Beitr Kryptogamenflora Schweiz 11:1–922

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v.2. Program distributed by the author. Evolutionary Biology Centre. Uppsala University

  • Oxenham BL (1963) Report of the Plant Pathology Section. Report for the Department of Agriculture. Queensland, Australia

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peregrine WTH, Watson DRW (1964) Annual report of the plant pathology section. Department of Agriculture, Tanganyika

    Google Scholar 

  • Pethybridge SJ, Hay F (2001) Influence of Phoma ligulicola on yield, and site factors on disease development, in Tasmanian pyrethrum crops. Australas Plant Pathol 30:17–20

    Article  Google Scholar 

  • Pethybridge SJ, Wilson CR (1998) Confirmation of ray blight disease of pyrethrum in Australia. Australas Plant Pathol 27:45–48

    Article  Google Scholar 

  • Pethybridge SJ, Scott JB, Hay FS (2004) Genetic relationships among isolates of Phoma ligulicola from pyrethrum and chrysanthemum based on ITS sequences and its detection by PCR. Australas Plant Pathol 33:173–181

    Article  CAS  Google Scholar 

  • Pethybridge SJ, Esker PD, Dixon P, Hay FS, Groom T et al (2007) Quantifying loss caused by ray blight disease in Tasmanian pyrethrum fields. Plant Dis 91:1116–1121

    Article  Google Scholar 

  • Pethybridge SJ, Hay FS, Clarkson RA, Groom T, Wilson CR (2008a) Host range of Australian Phoma ligulicola var. inoxydablis isolates from pyrethrum. J Phytopathol 156:506–508

    Article  Google Scholar 

  • Pethybridge SJ, Hay F, Esker P, Groom T, Wilson C, Nutter FW Jr (2008b) Visual and radiometric assessments for yield losses caused by ray blight in pyrethrum. Crop Sci 48:343–352

    Article  Google Scholar 

  • Pethybridge SJ, Hay FS, Esker PD, Gent DH, Wilson CR, Nutter FW Jr (2008c) Diseases of pyrethrum in Tasmania: challenges and prospects for management. Plant Dis 92:1260–1272

    Article  Google Scholar 

  • Punithalingam E (1980) Didymella chrysanthemi. C.M.I. Descriptions of Pathogenic Fungi and Bacteria no. 662:1–3

  • Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S et al (2011) Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69

    PubMed  Article  CAS  Google Scholar 

  • Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew

    Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Richardson MJ (1979) An annotated list of seed-borne diseases. C.M.I. Phytopathol Pap 23:1–320

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  Article  CAS  Google Scholar 

  • Simmonds JH (1996) Host index of plant disease in Queensland. Queensland Department of Primary Industries, Brisbane

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  Article  CAS  Google Scholar 

  • Stevens FL (1907) The Chrysanthemum ray blight. Bot Gaz 44:241–258

    Article  Google Scholar 

  • Swofford DL (2003) PAUP Phylogenetic Analysis Using Parsimony (and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tassi F (1900) Novae micromycetum species descriptae et iconibus illustratae. Boll Lab Orto Bot Reale Univ Siena 3:117–132

    Google Scholar 

  • Van der Aa HA, Noordeloos ME, De Gruyter J (1990) Species concepts in some large genera of the Coelomycetes. Stud Mycol 32:3–19

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed  CAS  Google Scholar 

  • Voglino P (1902) Sopra una malattia dei crisantemi coltivati. Malpighia 15:329–341

    Google Scholar 

  • Walker J, Baker KF (1983) The correct binomial for the chrysanthemum ray blight pathogen in relation to its geographical distribution. Trans Br Mycol Soc 80:31–38

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In: PCR Protocols. A guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Woudenberg JHC, Aveskamp MM, De Gruyter J, Spiers AG, Crous PW (2009) Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22:56–62

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Frank Hay and Dr Suzanne Jones from the Tasmanian Institute of Agriculture, University of Tasmania, for constructive discussion and information on the isolates. We are very grateful to Drs Johannes Z. Groenewald, Johannes De Gruyter, and Lorenzo Lombard for critical review of this paper. We thank the curators of CBS for providing cultures of the ex-type strains. This project was supported by Botanical Resources Australia—Agricultural Services Pty. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. J. Taylor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaghefi, N., Pethybridge, S.J., Ford, R. et al. Stagonosporopsis spp. associated with ray blight disease of Asteraceae . Australasian Plant Pathol. 41, 675–686 (2012). https://doi.org/10.1007/s13313-012-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-012-0161-3

Keywords

  • Phoma ligulicola var. inoxydabilis
  • Ray blight
  • Stagonosporopsis