Skip to main content

Advertisement

Log in

Evolution Bites — Timeworn Inefficacious Snakebite Therapy in the Era of Recombinant Vaccines

  • Perspective
  • Published:
Indian Pediatrics Aims and scope Submit manuscript

Abstract

Snakebite is a neglected tropical disease that inflicts severe socioeconomic burden on developing countries by primarily affecting their rural agrarian populations. India is a major snakebite hotspot in the world, as it accounts for more than 58,000 annual snakebite mortalities and over three times that number of morbidities. The only available treatment for snakebite is a commercially marketed polyvalent antivenom, which is manufactured exclusively against the ‘big four’ Indian snakes. In this review, we highlight the influence of ecology and evolution in driving inter- and intra-specific venom variations in snakes. We describe the repercussions of this molecular variation on the effectiveness of the current generation Indian antivenoms in mitigating snakebite pathologies. We highlight the disturbing deficiencies of the conventional animal-derived antivenoms, and review next-generation recombinant antivenoms and other promising therapies for the efficacious treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunagar K, Casewell N, Varma S, Kolla R, Antunes A, Moran Y. Deadly innovations: Unraveling the molecular evolution of animal venoms. Venom Genomics and Proteomics; Springer. 2014.p.1–23.

  2. Suranse V, Iyer A, Jackson T, Sunagar K. Early origin and diversification of the enigmatic reptilian venom cocktail. Systematic Association Special Volume. 2020.

  3. Casewell NR, Jackson TN, Laustsen AH, Sunagar K. Causes and consequences of snake venom variation. Trends in pharmacological sciences. 2020.

  4. Gutierrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers. 2017;3:17063.

    Article  Google Scholar 

  5. Suraweera W, Warrell D, Whitaker R, Menon GR, Rodrigues R, Fu SH, Begum R, Sati P, Piyasena K, Bhatia M, Brown P. Trends in snakebite mortality in India from 2000 to 2019 in a nationally representative mortality study. medRxiv. 2020 Jan 1.

  6. Mohamed Abd El-Aziz T, Soares AG, Stockand JD. Snake venoms in drug discovery: valuable therapeutic tools for life saving. Toxins (Basel). 2019;11:564.

    Article  Google Scholar 

  7. Laxme RS, Khochare S, de Souza HF, et al. Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl Trop Dis. 2019;13:12.

    Google Scholar 

  8. Shashidharamurthy R, Kemparaju K. Region-specific neutralization of Indian cobra (Naja naja) venom by polyclonal antibody raised against the eastern regional venom: A comparative study of the venoms from three different geographical distributions. Int Immunopharmacol. 2007;7:61–9.

    Article  CAS  Google Scholar 

  9. Casewell NR, Cook DA, Wagstaff SC, et al. Pre-clinical assays predict pan-African Echis viper efficacy for a species-specific antivenom. PLoS Negl Trop Dis. 2010;4:e851.

    Article  Google Scholar 

  10. Ariaratnam CA, Sjostrom L, Raziek Z, et al. An open, randomized comparative trial of two antivenoms for the treatment of envenoming by Sri Lankan Russell’s viper (Daboia russelii russelii). Trans R Soc Trop Med Hyg. 2001;95:74–80.

    Article  CAS  Google Scholar 

  11. Mukherjee AK, Maity CR. Biochemical composition, lethality and pathophysiology of venom from two cobras — Naja naja and N. kaouthia. Comp Biochem Physiol B Biochem Mol Biol. 2002;131:125–32.

    Article  CAS  Google Scholar 

  12. Shashidharamurthy R, Jagadeesha DK, Girish KS, Kemparaju K. Variations in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution. Mol Cell Biochem. 2002;229:93–101.

    Article  CAS  Google Scholar 

  13. Kadali R, Kadiyala G, Gurunathan J. Pre clinical assessment of the effectiveness of modified polyvalent antivenom in the neutralization of Naja naja venom toxicity. Biotechnol Appl Bioc. 2016;63:827–33.

    Article  CAS  Google Scholar 

  14. Chanda A, Kalita B, Patra A, Senevirathne WDST, Mukherjee AK. Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics. 2019;16:171–84.

    Article  CAS  Google Scholar 

  15. Prasad NB, Uma B, Bhatt SK, Gowda VT. Comparative characterisation of Russell’s viper (Daboia/Vipera russelli) venoms from different regions of the Indian peninsula. Biochim Biophys Acta. 1999;1428:121–36.

    Article  CAS  Google Scholar 

  16. Sharma M, Gogoi N, Dhananjaya B, Menon JC, Doley R. Geographical variation of Indian Russell’s viper venom and neutralization of its coagulopathy by polyvalent antivenom. Toxin Reviews. 2014;33:7–15.

    Article  CAS  Google Scholar 

  17. Kalita B, Singh S, Patra A, Mukherjee AK. Quantitative proteomic analysis and antivenom study revealing that neurotoxic phospholipase A2 enzymes, the major toxin class of Russell’s viper venom from southern India, shows the least immuno-recognition and neutralization by commercial polyvalent antivenom. Int J Biol Macromol. 2018;118:375–85.

    Article  CAS  Google Scholar 

  18. Pla D, Sanz L, Quesada-Bernat S, et al. Phylovenomics of Daboia russelii across the Indian subcontinent, Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J Proteom. 2019;207:103443.

    Article  CAS  Google Scholar 

  19. Patra A, Kalita B, Chanda A, Mukherjee AK. Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological properties and pathophysiology of envenomation. Sci Rep. 2017;7:1–17.

    Article  Google Scholar 

  20. Patra A, Chanda A, Mukherjee AK. Quantitative proteomic analysis of venom from Southern India common krait (Bungarus caeruleus) and identification of poorly immunogenic toxins by immune-profiling against commercial antivenom. Expert Rev Proteomics. 2019;16:457–69.

    Article  CAS  Google Scholar 

  21. Sunagar K, Khochare S, Laxme RS, et al. A wolf in another wolf’s clothing: Post-genomic regulation dictates venom profiles of medically-important cryptic kraits in India [preprint]. bioRxiv. 2020.12.15.422536

  22. Fernández J, Alape-Girón A, Angulo Y, et al. Venomic and antivenomic analyses of the Central American coral snake, Micrurus nigrocinctus (Elapidae). J Proteome Res. 2011;10:1816–27.

    Article  Google Scholar 

  23. Kini RM, Sidhu SS, Laustsen AH. Biosynthetic oligoclonal antivenom (boa) for snakebite and next-generation treatments for snakebite victims. Toxins. 2018;10:534.

    Article  CAS  Google Scholar 

  24. Kulkeaw K, Sakolvaree Y, Srimanote P, et al. Human monoclonal ScFv neutralize lethal Thai cobra, Naja kaouthia, neurotoxin. J Proteomics. 2009;72:270–82.

    Article  CAS  Google Scholar 

  25. Ferreira RN, Machado de Avila RA, Sanchez EF, et al. Antibodies against synthetic epitopes inhibit the enzymatic activity of mutalysin II, a metalloproteinase from bushmaster snake venom. Toxicon. 2006;48:1098–103.

    Article  CAS  Google Scholar 

  26. Ye F, Zheng Y, Wang X, et al. Recognition of Bungarus multicinctus venom by a DNA aptamer against betabungarotoxin. PLoS One. 2014;9:e105404.

    Article  Google Scholar 

  27. Machado de Avila RA, Stransky S, Velloso M, et al. Mimotopes of mutalysin-II from Lachesis muta snake venom induce hemorrhage inhibitory antibodies upon vaccination of rabbits. Peptides. 2011;32:1640–6.

    Article  CAS  Google Scholar 

  28. Lewin M, Samuel S, Merkel J, Bickler P. Varespladib (LY315920) appears to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a possible pre-referral treatment for envenomation. Toxins. 2016;8:248.

    Article  Google Scholar 

  29. O’Brien J, Lee SH, Gutierrez JM, Shea KJ. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Negl Trop Dis. 2018;12:e0006736.

    Article  Google Scholar 

  30. Karain BD, Lee MKH, Hayes WK. C60 Fullerenes as a novel treatment for poisoning and envenomation: A proof-of-concept study for snakebite. J Nanosci Nanotech. 2016;16:7764–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RR Senji Laxme and Suyog Khochare (Evolutionary Venomics Lab, IISc) for their inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Sunagar.

Additional information

Contributors

All authors contributed equally to the manuscript.

Funding

KS: Department of Science and Technology (DST) INSPIRE Faculty Award, DST-FIST, DBT-IISc Partnership Program, and the DBT/Wellcome Trust India Alliance Fellowship.

Competing interest

None stated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Iyer, A. & Sunagar, K. Evolution Bites — Timeworn Inefficacious Snakebite Therapy in the Era of Recombinant Vaccines. Indian Pediatr 58, 219–223 (2021). https://doi.org/10.1007/s13312-021-2158-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13312-021-2158-x

Keywords

Navigation