Skip to main content
Log in

Magnetic Resonance-Guided Focused Ultrasound Thalamotomy Rebalances Atypical Functional Hierarchy in Patients with Essential Tremor

  • Original Article
  • Published:
Neurotherapeutics

Abstract

Magnetic resonance-guided focused ultrasound (MRgFUS) has brought thalamotomy back to the frontline for essential tremor (ET). As functional organization of human brain strictly follows hierarchical principles which are frequently deficient in neurological diseases, whether additional damage from MRgFUS thalamotomy induces further disruptions of ET functional scaffolds are still controversial. This study was to examine the alteration features of brain functional frameworks following MRgFUS thalamotomy in patients with ET. We retrospectively obtained preoperative (ETpre) and postoperative 6-month (ET6m) data of 30 ET patients underwent MRgFUS thalamotomy from 2018 to 2020. Their archived functional MR images were used to functional gradient comparison. Both supervised pattern learning and stepwise linear regression were conducted to associate gradient features to tremor symptoms with additional neuropathophysiological analysis. MRgFUS thalamotomy relieved 78.19% of hand tremor symptoms and induced vast global framework alteration (ET6m vs. ETpre: Cohen d = − 0.80, P < 0.001). Multiple robust alterations were identified especially in posterior cingulate cortex (\({\mathrm{ET}}_{6\mathrm{m}}\) ET6m vs. \({\mathrm{ET}}_{\mathrm{pre}}\) ETpre: Cohen d = 0.87, P = 0.048). Compared with matched health controls (HCs), its gradient distances to primary communities were significantly increased in \({\mathrm{ET}}_{\mathrm{pre}}\) ETpre patients with anomalous stepwise connectivity (P < 0.05 in ETpre vs. HCs), which were restored after MRgFUS thalamotomy. Both global and regional gradient features could be used for tremor symptom prediction and were linked to neuropathophysiological features of Parkinson disease and oxidative phosphorylation. MRgFUS thalamotomy not only suppress tremor symptoms but also rebalances atypical functional hierarchical architecture of ET patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AHBA:

Allen Human Brain Atlas

CRST:

Clinical Evaluation Scale for Tremor

DA:

Dorsal attention

DMN:

Default mode network

ET:

Essential tremor

FDA:

Food and Drug Administration

FDR:

False discovery rate

FP:

Frontoparietal

GRETNA:

Graph theoretical network analysis

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LASSO:

Least absolute shrinkage and selection operator

Lim:

Limbic

MNI:

Montreal Neurological Institute

MRI:

Magnetic resonance imaging

MRgFUS:

Magnetic resonance-guided focused ultrasound

ROI:

Region of interest

PLSR:

Partial least squares regression

SFC:

Stepwise connectivity estimation

SM:

Somatomotor

VA:

Ventral attention

Vim:

Thalamic ventral intermediate

Vis:

Visual

References

  1. Ghanouni P, Pauly KB, Elias WJ, Henderson J, Sheehan J, Monteith S, et al. Transcranial MRI-guided focused ultrasound: a review of the technologic and neurologic applications. 2015;205(1):150–9.

    Google Scholar 

  2. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.

    Article  PubMed  Google Scholar 

  3. Okun MS, Vitek JL. Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. J Mov Disord. 2004;19(4):375–89.

    Article  PubMed  Google Scholar 

  4. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA. 2016;113(44):12574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Badre D, D’Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci. 2009;10(9):659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mishkin M, Ungerleider LG. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res. 1982;6(1):57–77.

    Article  CAS  PubMed  Google Scholar 

  7. Huntenburg JM, Bazin PL, Margulies DS. Large-scale gradients in human cortical organization. Trends Cogn Sci. 2018;22(1):21–31.

    Article  PubMed  Google Scholar 

  8. Hong SJ, Vos de Wael R, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, et al. Atypical functional connectome hierarchy in autism. Nat Commun. 2019;10(1):1022.

  9. Bayrak Ş, Khalil AA, Villringer K, Fiebach JB, Villringer A, Margulies DS, et al. The impact of ischemic stroke on connectivity gradients. NeuroImage Clin. 2019;24:101947.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meng Y, Yang S, Chen H, Li J, Xu Q, Zhang Q, et al. Systematically disrupted functional gradient of the cortical connectome in generalized epilepsy: initial discovery and independent sample replication. Neuroimage. 2021;230:117831.

    Article  PubMed  Google Scholar 

  11. Lambert C, Simon H, Colman J, Barrick TR. Defining thalamic nuclei and topographic connectivity gradients in vivo. Neuroimage. 2017;158:466–79.

    Article  PubMed  Google Scholar 

  12. Guell X, Schmahmann JD, Gabrieli J, Ghosh SS. Functional gradients of the cerebellum. eLife. 2018;7.

  13. Llinás R, Ribary U, Jeanmonod D, Cancro R, Kronberg E, Schulman J, et al. Thalamocortical dysrhythmia I.: functional and imaging aspects. Thalamus & Related Systems. 2001;1(3):237–44.

  14. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  CAS  PubMed  Google Scholar 

  15. Lin J, Kang X, Xiong Y, Zhang D, Zong R, Yu X, et al. Convergent structural network and gene signatures for MRgFUS thalamotomy in patients with Parkinson’s disease. Neuroimage. 2021;243:118550.

    Article  PubMed  Google Scholar 

  16. Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9:386.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral cortex (New York, NY : 1991) 2018;28(9):3095–114.

  18. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012;108(8):2242–63.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Horn A, Kühn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage. 2015;107:127–35.

    Article  PubMed  Google Scholar 

  21. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–65.

    Article  PubMed  Google Scholar 

  22. Vos de Wael R, Benkarim O, Paquola C, Lariviere S, Royer J, Tavakol S, et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun Biol. 2020;3(1):103.

  23. Hong SJ, Xu T, Nikolaidis A, Smallwood J, Margulies DS, Bernhardt B, et al. Toward a connectivity gradient-based framework for reproducible biomarker discovery. Neuroimage. 2020;223: 117322.

    Article  CAS  PubMed  Google Scholar 

  24. Langs G, Golland P, Ghosh SS. Predicting activation across individuals with resting-state functional connectivity based multi-atlas label fusion. Cham: Springer International Publishing; 2015;313–20.

    Google Scholar 

  25. Sepulcre J, Sabuncu MR, Yeo TB, Liu H, Johnson KA. Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J Neurosci. 2012;32(31):10649–61.

    Article  CAS  PubMed  Google Scholar 

  26. Sepulcre J. Functional streams and cortical integration in the human brain. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 2014;20(5):499–508.

    Article  PubMed  Google Scholar 

  27. Markello RD, Arnatkeviciute A, Poline JB, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife. 2021;10.

  28. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE. 2010;5(10):e13701.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murphy K, Fox MD. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage. 2017;154:169–73.

    Article  PubMed  Google Scholar 

  31. van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BTT, Schmidt R. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations. Neuroimage. 2017;152:437–49.

    Article  PubMed  Google Scholar 

  32. Zeng Q, Guan X, Guo T,Law Yan Lun JC, Zhou C, Luo X, et al. The ventral Intermediate nucleus differently modulates subtype-related networks in Parkinson’s disease. 2019;13:202.

    Google Scholar 

  33. Schweighofer N, Doya K, Kuroda SJBRR. Cerebellar aminergic neuromodulation: towards a functional understanding. 2004;44(2–3):103–16.

    Google Scholar 

  34. Ruppert MC, Greuel A, Freigang J, Tahmasian M, Maier F, Hammes J, et al. The default mode network and cognition in Parkinson’s disease: a multimodal resting-state network approach. Hum Brain Mapp. 2021;42(8):2623–41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bejr-Kasem H, Pagonabarraga J, Martínez-Horta S, Sampedro F, Marín-Lahoz J, Horta-Barba A, et al. Disruption of the default mode network and its intrinsic functional connectivity underlies minor hallucinations in Parkinson’s disease. J Mov Disord. 2019;34(1):78–86.

    Article  PubMed  Google Scholar 

  36. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  37. Rodriguez-Sabate C, Morales I, Sanchez A, Rodriguez M. The functional interaction of the brain default network with motor networks is modified by aging. Behav Brain Res. 2019;372:112048.

    Article  PubMed  Google Scholar 

  38. Yang J, Lei D, Peng J, Suo X, Pinaya WHL, Li W, et al. Disrupted brain gray matter networks in drug-naïve participants with essential tremor. Neuroradiology. 2021;63(9):1501–10.

    Article  PubMed  Google Scholar 

  39. Benito-León J, Louis ED, Romero JP, Hernández-Tamames JA, Manzanedo E, Álvarez-Linera J, et al. Altered functional connectivity in essential tremor: a resting-state fMRI study. Medicine. 2015;94(49):e1936.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fang W, Chen H, Wang H, Zhang H, Liu M, Puneet M, et al. Multiple resting-state networks are associated with tremors and cognitive features in essential tremor. J Mov Disord. 2015;30(14):1926–36.

    Article  PubMed  Google Scholar 

  41. Peng J, Yang J, Li J, Lei D, Li N, Suo X, et al. Disrupted brain functional network topology in essential tremor patients with poor sleep quality. Front Neurosci. 2022;16:814745.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li JY, Suo XL, Li NN, Lei D, Peng JX, Yang J, et al. Disrupted brain network topology in drug-naïve essential tremor patients with and without depression : a resting state functional magnetic resonance imaging study. Clin Neuroradiol. 2021;31(4):981–92.

    Article  PubMed  Google Scholar 

  43. Tian Q, Wintermark M, Jeffrey Elias W, Ghanouni P, Halpern CH, Henderson JM, et al. Diffusion MRI tractography for improved transcranial MRI-guided focused ultrasound thalamotomy targeting for essential tremor. NeuroImage Clin. 2018;19:572–80.

  44. Xiong Y, Han D, He J, Zong R, Bian X, Duan C, et al. Correlation of visual area with tremor improvement after MRgFUS thalamotomy in Parkinson’s disease. J Neurosurg. 2022;136(3):681–8.

    Article  PubMed  Google Scholar 

  45. Jang C, Park H-J, Chang WS, Pae C, Chang JW. Immediate and longitudinal alterations of functional networks after thalamotomy in essential tremor. Front Neurol. 2016;7:184.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stanziano M, Golfrè Andreasi N, Messina G, Rinaldo S, Palermo S, Verri M, et al. Resting state functional connectivity signatures of MRgFUS Vim thalamotomy in Parkinson’s disease: a preliminary study. Front Neurol. 2021;12:786734.

    Article  PubMed  Google Scholar 

  47. Koga S, Ishaque M, Jeffrey Elias W, Shah BB, Murakami A, Dickson DW. Neuropathology of Parkinson’s disease after focused ultrasound thalamotomy. NPJ Parkinson’s disease. 2022;8(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tarakad A, Jankovic J. Essential tremor and Parkinson’s disease: exploring the relationship. Tremor Other Hyperkinet Mov (N Y). 2018;8:589.

    Article  PubMed  Google Scholar 

  49. Yoo YM, Lee CJ, Lee U, Kim YJ. Mitochondrial DNA in patients with essential tremor. Neurosci Lett. 2008;434(1):29–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would also like to express our heartfelt thanks to Professors Yuesong Pan and Miao Liu for their guidance in the paper preparation.

Funding

This research was supported by National Natural Science Foundation of China 82151309, 81825012, and 81730048 to XL as well as China Postdoctoral Science Foundation 2022T150788 to JJL.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XL, LSP, JJL, XPK; methodology: JJL, XPK, DKZ, JYZ, XBB, DZ, XYW; investigation: DKZ, HXL, XYG; visualization: JJL, DKZ; supervision: XGY, LSP, XL, JS; writing—original draft: JJL, XPK, JS; writing—review and editing: JS, LSP, XL.

Corresponding authors

Correspondence to Longsheng Pan or Xin Lou.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3382 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Kang, X., Lu, H. et al. Magnetic Resonance-Guided Focused Ultrasound Thalamotomy Rebalances Atypical Functional Hierarchy in Patients with Essential Tremor. Neurotherapeutics 20, 1755–1766 (2023). https://doi.org/10.1007/s13311-023-01442-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01442-9

Keywords

Navigation