Skip to main content
Log in

Functional Brain Networks to Evaluate Treatment Responses in Parkinson’s Disease

  • Current Perspectives
  • Published:
Neurotherapeutics

Abstract

Network analysis of functional brain scans acquired with [18F]-fluorodeoxyglucose positron emission tomography (FDG PET, to map cerebral glucose metabolism), or resting-state functional magnetic resonance imaging (rs-fMRI, to map blood oxygen level-dependent brain activity) has increasingly been used to identify and validate reproducible circuit abnormalities associated with neurodegenerative disorders such as Parkinson’s disease (PD). In addition to serving as imaging markers of the underlying disease process, these networks can be used singly or in combination as an adjunct to clinical diagnosis and as a screening tool for therapeutics trials. Disease networks can also be used to measure rates of progression in natural history studies and to assess treatment responses in individual subjects. Recent imaging studies in PD subjects scanned before and after treatment have revealed therapeutic effects beyond the modulation of established disease networks. Rather, other mechanisms of action may be at play, such as the induction of novel functional brain networks directly by treatment. To date, specific treatment-induced networks have been described in association with novel interventions for PD such as subthalamic adeno-associated virus glutamic acid decarboxylase (AAV2-GAD) gene therapy, as well as sham surgery or oral placebo under blinded conditions. Indeed, changes in the expression of these networks with treatment have been found to correlate consistently with clinical outcome. In aggregate, these attributes suggest a role for functional brain networks as biomarkers in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available from the corresponding author upon reasonable request.

References

  1. Bove F, Mulas D, Cavallieri F, et al. Long-term outcomes (15 years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology. 2021;97:e254–62.

    Article  Google Scholar 

  2. Hartmann CJ, Fliegen S, Groiss SJ, et al. An update on best practice of deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disord. 2019;12:175628641983809.

    Article  Google Scholar 

  3. Malvea A, Babaei F, Boulay C, et al. Deep brain stimulation for Parkinson’s disease: a review and future outlook. Biomed Eng Lett. 2022;12:303–16.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Harary M, Segar DJ, Huang KT, et al. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg Focus. 2018;44:E2.

    Article  PubMed  Google Scholar 

  5. Schlesinger I, Sinai A, Zaaroor M. MRI-guided focused ultrasound in Parkinson’s disease: a review. Parkinsons Dis. 2017;2017:8124624.

    PubMed Central  PubMed  Google Scholar 

  6. LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. The Lancet Neurology. 2011;10:309–19.

    Article  CAS  PubMed  Google Scholar 

  7. Niethammer M, Tang CC, LeWitt PA, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight. 2017;2:e90133.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Merola A, Kobayashi N, Romagnolo A, et al. Gene therapy in movement disorders: a systematic review of ongoing and completed clinical trials. Front Neurol [Internet]. 2021 [cited 2023 Jun 4];12. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2021.648532.

  9. Barker RA. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat Med. 2019;25:1045–53.

    Article  CAS  PubMed  Google Scholar 

  10. Mari Z, Mestre TA. The disease modification conundrum in Parkinson’s disease: failures and hopes. Front Aging Neurosci [Internet]. 2022 [cited 2023 Feb 1];14. Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2022.810860.

  11. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

    Article  PubMed  Google Scholar 

  12. Shulman LM, Pretzer-Aboff I, Anderson KE, et al. Subjective report versus objective measurement of activities of daily living in Parkinson’s disease. Mov Disord. 2006;21:794–9.

    Article  PubMed  Google Scholar 

  13. Rovini E, Maremmani C, Cavallo F. How wearable sensors can support Parkinson’s disease diagnosis and treatment: a systematic review. Front Neurosci [Internet]. 2017 [cited 2023 Jun 4];11. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2017.00555.

  14. Schlachetzki JCM, Barth J, Marxreiter F, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE. 2017;12:e0183989.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ma Y, Tang C, Chaly T, et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-FDOPA PET outcomes. J Nucl Med. 2010;51:7–15.

    Article  PubMed  Google Scholar 

  16. Schweitzer JS, Song B, Herrington TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med. 2020;382:1926–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Strafella AP, Bohnen NI, Perlmutter JS, et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers. Mov Disord. 2017;32:181–92.

    Article  PubMed  Google Scholar 

  18. Huang C, Tang C, Feigin A, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–46.

    Article  PubMed  Google Scholar 

  19. Tang CC, Poston KL, Dhawan V, et al. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J Neurosci. 2010;30:1049–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tang CC, Holtbernd F, Ma Y, et al. Hemispheric network expression in Parkinson’s disease: relationship to dopaminergic asymmetries. JPD. 2020;10:1737–49.

    Article  CAS  PubMed  Google Scholar 

  21. Niethammer M, Tang CC, Vo A, et al. Gene therapy reduces Parkinson’s disease symptoms by reorganizing functional brain connectivity. Sci Transl Med. 2018;10:eaau0713.

    Article  CAS  PubMed  Google Scholar 

  22. Perovnik M, Rus T, Schindlbeck KA, et al. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat Rev Neurol. 2022;19:73–90.

    Article  PubMed  Google Scholar 

  23. Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32:548–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Spetsieris PG, Eidelberg D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage. 2011;54:2899–914.

    Article  PubMed  Google Scholar 

  25. Sala A, Perani D. Brain molecular connectivity in neurodegenerative diseases: recent advances and new perspectives using positron emission tomography. Front Neurosci. 2019;13:617.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Meles SK, Renken RJ, Pagani M, et al. Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three European cohorts. Eur J Nucl Med Mol Imaging. 2020;47:437–50.

    Article  CAS  PubMed  Google Scholar 

  27. Alexander GE, Moeller JR. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease. Hum Brain Mapp. 1994;2:79–94.

    Article  Google Scholar 

  28. Habeck C, Stern Y, the Alzheimer’s Disease Neuroimaging Initiative. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem Biophys. 2010;58:53–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Spetsieris PG, Eidelberg D. Spectral guided sparse inverse covariance estimation of metabolic networks in Parkinson’s disease. Neuroimage. 2021;226:117568.

    Article  CAS  PubMed  Google Scholar 

  30. Ko JH, Spetsieris PG, Eidelberg D. Network structure and function in Parkinson’s Disease. Cereb Cortex. 2018;28:4121–35.

    PubMed  Google Scholar 

  31. Habeck C, Krakauer JW, Ghez C, et al. A new approach to spatial covariance modeling of functional brain imaging data: ordinal trend analysis. Neural Comput. 2005;17:1602–45.

    Article  PubMed  Google Scholar 

  32. Carbon M, Argyelan M, Habeck C, et al. Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study. Brain. 2010;133:690–700.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Mure H, Tang CC, Argyelan M, et al. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. J Neurosci. 2012;32:2804–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ko JH, Mure H, Tang CC, et al. Parkinson’s disease: increased motor network activity in the absence of movement. J Neurosci. 2013;33:4540–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tang CC, Feigin A, Ma Y, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123:4076–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Perovnik M, Tang CC, Namías M, et al. Longitudinal changes in metabolic network activity in early Alzheimer’s disease. Alzheimers Dement. 2023 May 19. https://doi.org/10.1002/alz.13137. Online ahead of print.

  37. Brakedal B, Dölle C, Riemer F, et al. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 2022;34:396-407.e6.

    Article  CAS  PubMed  Google Scholar 

  38. Ko JH, Feigin A, Mattis PJ, et al. Network modulation following sham surgery in Parkinson’s disease. J Clin Invest. 2014;124:3656–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mure H, Hirano S, Tang CC, et al. Parkinson’s disease tremor-related metabolic network: Characterization, progression, and treatment effects. Neuroimage. 2011;54:1244–53.

    Article  PubMed  Google Scholar 

  40. Christie IN, Wells JA, Kasparov S, et al. Volumetric spatial correlations of neurovascular coupling studied using single pulse opto-fMRI. Sci Rep. 2017;7:41583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tang C, Wei Y, Zhao J, et al. The dynamic measurements of regional brain activity for resting-state fMRI: d-ALFF, d-fALFF and d-ReHo. In: Frangi AF, Schnabel JA, Davatzikos C, et al., editors. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Cham: Springer International Publishing; 2018. p. 190–7.

    Chapter  Google Scholar 

  42. Himberg J, Hyvärinen A, Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage. 2004;22:1214–22.

    Article  PubMed  Google Scholar 

  43. Calhoun VD, Liu J, Adalı T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage. 2009;45:S163–72.

    Article  PubMed  Google Scholar 

  44. Erhardt EB, Rachakonda S, Bedrick EJ, et al. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2010;32:2075–95.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hyvärinen A. Independent component analysis: recent advances. Phil Trans R Soc A. 2013;371:20110534.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Vo A, Sako W, Fujita K, et al. Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp. 2017;38:617–30.

    Article  PubMed  Google Scholar 

  47. Filippini N, MacIntosh BJ, Hough MG, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009;106:7209–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rommal A, Vo A, Schindlbeck KA, et al. Parkinson’s disease-related pattern (PDRP) identified using resting-state functional MRI: Validation study. Neuroimage. 2021;1:100026.

    Article  Google Scholar 

  49. Ma Y, Tang C, Spetsieris PG, et al. Abnormal metabolic network activity in Parkinson’s disease: test–retest reproducibility. J Cereb Blood Flow Metab. 2007;27:597–605.

    Article  PubMed  Google Scholar 

  50. Niethammer M, Eidelberg D. Metabolic brain networks in translational neurology: concepts and applications. Ann Neurol. 2012;72:635–47.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ko JH, Lee CS, Eidelberg D. Metabolic network expression in parkinsonism: Clinical and dopaminergic correlations. J Cereb Blood Flow Metab. 2017;37:683–93.

    Article  CAS  PubMed  Google Scholar 

  52. Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. The Lancet Neurology. 2018;17:629–40.

    Article  PubMed  Google Scholar 

  53. Matthews DC, Lerman H, Lukic A, et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. Neuroimage Clin. 2018;20:572–9.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Schindlbeck KA, Lucas-Jiménez O, Tang CC, et al. Metabolic network abnormalities in drug-naïve Parkinson’s disease. Mov Disord. 2020;35:587–94.

    Article  CAS  PubMed  Google Scholar 

  55. Martí-Andrés G, van Bommel L, Meles SK, et al. Multicenter validation of metabolic abnormalities related to PSP according to the MDS-PSP criteria. Mov Disord. 2020;35:2009–18.

    Article  PubMed  Google Scholar 

  56. Ko JH, Spetsieris P, Ma Y, et al. Quantifying significance of topographical similarities of disease-related brain metabolic patterns. PLoS ONE. 2014;9:e88119.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Tomše P, Jensterle L, Grmek M, et al. Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample. Neuroradiology. 2017;59:507–15.

    Article  PubMed  Google Scholar 

  58. Peng S, Tang C, Schindlbeck K, et al. Dynamic 18F-FPCIT PET: Quantification of Parkinson’s disease metabolic networks and nigrostriatal dopaminergic dysfunction in a single imaging session. J Nucl Med. 2021;62:1775–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Holtbernd F, Ma Y, Peng S, et al. Dopaminergic correlates of metabolic network activity in Parkinson’s disease. Hum Brain Mapp. 2015;36:3575–85.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Liu F-T, Ge J-J, Wu J-J, et al. Clinical, dopaminergic, and metabolic correlations in Parkinson disease: a dual-tracer PET study. Clin Nucl Med. 2018;43:562.

    Article  PubMed  Google Scholar 

  61. Huber M, Beyer L, Prix C, et al. Metabolic correlates of dopaminergic loss in dementia with lewy bodies. Mov Disord. 2020;35:595–605.

    Article  CAS  PubMed  Google Scholar 

  62. Lin TP, Carbon M, Tang C, et al. Metabolic correlates of subthalamic nucleus activity in Parkinson’s disease. Brain. 2008;131:1373–80.

    Article  PubMed  Google Scholar 

  63. Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142:744–59.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Holtbernd F, Gagnon J-F, Postuma RB, et al. Abnormal metabolic network activity in REM sleep behavior disorder. Neurology. 2014;82:620–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Wu P, Yu H, Peng S, et al. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder. Brain. 2014;137:3122–8.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Meles SK, Vadasz D, Renken RJ, et al. FDG PET, dopamine transporter SPECT, and olfaction: Combining biomarkers in REM sleep behavior disorder. Mov Disord. 2017;32:1482–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kogan RV, Janzen A, Meles SK, et al. Four-year follow-up of [18F]Fluorodeoxyglucose positron emission tomography-based Parkinson’s disease-related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression. Mov Disord. 2021;36:230–5.

    Article  CAS  PubMed  Google Scholar 

  68. Huang Z, Jiang C, Li L, et al. Correlations between dopaminergic dysfunction and abnormal metabolic network activity in REM sleep behavior disorder. J Cereb Blood Flow Metab. 2020;40:552–62.

    Article  PubMed  Google Scholar 

  69. Shin JH, Lee J-Y, Kim Y-K, et al. Parkinson disease-related brain metabolic patterns and neurodegeneration in isolated REM sleep behavior disorder. Neurology. 2021;97:e378–88.

    Article  CAS  PubMed  Google Scholar 

  70. Wolters AF, van de Weijer SCF, Leentjens AFG, et al. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat Disord. 2019;62:16–27.

    Article  PubMed  Google Scholar 

  71. Spetsieris PG, Ko JH, Tang CC, et al. Metabolic resting-state brain networks in health and disease. Proc Natl Acad Sci. 2015;112:2563–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ruppert MC, Greuel A, Freigang J, et al. The default mode network and cognition in Parkinson’s disease: a multimodal resting-state network approach. Hum Brain Mapp. 2021;42:2623–41.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Huang C, Mattis P, Tang C, et al. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage. 2007;34:714–23.

    Article  PubMed  Google Scholar 

  74. Mattis PJ, Tang CC, Ma Y, et al. Network correlates of the cognitive response to levodopa in Parkinson disease. Neurology. 2011;77:858–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Meles SK, Tang CC, Teune LK, et al. Abnormal metabolic pattern associated with cognitive impairment in Parkinson’s disease: a validation study. J Cereb Blood Flow Metab. 2015;35:1478–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Mattis PJ, Niethammer M, Sako W, et al. Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases. Neurology. 2016;87:1925–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Schindlbeck KA, Vo A, Mattis PJ, et al. Cognition-related functional topographies in Parkinson’s disease: localized loss of the ventral default mode network. Cereb Cortex. 2021;31:5139–50.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Huang C, Mattis P, Perrine K, et al. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70:1470–7.

    Article  CAS  PubMed  Google Scholar 

  79. Rus T, Schindlbeck KA, Tang CC, et al. Stereotyped relationship between motor and cognitive metabolic networks in Parkinson’s disease. Mov Disord. 2022;37:2247–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Braak H, Tredici KD, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  81. Hawkes CH, Del Tredici K, Braak H. A timeline for Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:79–84.

    Article  PubMed  Google Scholar 

  82. Burke RE, Dauer WT, Vonsattel JPG. A critical evaluation of the braak staging scheme for Parkinson’s disease. Ann Neurol. 2008;64:485–91.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20:385–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Beach TG, Adler CH. Importance of low diagnostic accuracy for early Parkinson’s disease. Mov Disord. 2018;33:1551–4.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Vlaar AM, de Nijs T, van Kroonenburgh MJ, et al. The predictive value of transcranial duplex sonography for the clinical diagnosis in undiagnosed parkinsonian syndromes: comparison with SPECT scans. BMC Neurol. 2008;8:1–8.

    Article  Google Scholar 

  86. Seppi K, Scherfler C, Donnemiller E, et al. Topography of dopamine transporter availability in progressive supranuclear palsy: a voxelwise [123I]β-CIT SPECT analysis. Arch Neurol. 2006;63:1154–60.

    Article  PubMed  Google Scholar 

  87. McFarland NR. Diagnostic approach to atypical parkinsonian syndromes. Continuum (Minneap Minn). 2016;22:1117–42.

    PubMed  Google Scholar 

  88. Levin J, Kurz A, Arzberger T, et al. The differential diagnosis and treatment of atypical parkinsonism. Dtsch Arztebl Int. 2016;113:61–9.

    PubMed Central  PubMed  Google Scholar 

  89. Deutschländer AB, Ross OA, Dickson DW, et al. Atypical parkinsonian syndromes: a general neurologist’s perspective. Eur J Neurol. 2018;25:41–58.

    Article  PubMed  Google Scholar 

  90. Fahn S, Jankovic J. Parkinsonism-plus syndromes and secondary parkinsonian disorders. Principles and practice of movement disorders. Philadelphia: Churchill Livingstone/Elsevier; 2007. p. 233–284.

  91. Eckert T, Barnes A, Dhawan V, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005;26:912–21.

    Article  PubMed  Google Scholar 

  92. Eckert T, Tang C, Ma Y, et al. Abnormal metabolic networks in atypical parkinsonism. Mov Disord. 2008;23:727–33.

    Article  PubMed  Google Scholar 

  93. Poston KL, Tang CC, Eckert T, et al. Network correlates of disease severity in multiple system atrophy. Neurology. 2012;78:1237–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Shen B, Wei S, Ge J, et al. Reproducible metabolic topographies associated with multiple system atrophy: Network and regional analyses in Chinese and American patient cohorts. Neuroimage Clin. 2020;28:102416.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Tomše P, Rebec E, Studen A, et al. Abnormal metabolic covariance patterns associated with multiple system atrophy and progressive supranuclear palsy. Physica Med. 2022;98:131–8.

    Article  Google Scholar 

  96. Ge J, Wu J, Peng S, et al. Reproducible network and regional topographies of abnormal glucose metabolism associated with progressive supranuclear palsy: Multivariate and univariate analyses in American and Chinese patient cohorts. Hum Brain Mapp. 2018;39:2842–58.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Niethammer M, Tang CC, Feigin A, et al. A disease-specific metabolic brain network associated with corticobasal degeneration. Brain. 2014;137:3036–46.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Tang CC, Poston KL, Eckert T, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 2010;9:149–58.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Tripathi M, Tang CC, Feigin A, et al. Automated differential diagnosis of early parkinsonism using metabolic brain networks: a validation study. J Nucl Med. 2016;57:60–6.

    Article  CAS  PubMed  Google Scholar 

  100. Rus T, Tomše P, Jensterle L, et al. Differential diagnosis of parkinsonian syndromes: a comparison of clinical and automated - metabolic brain patterns’ based approach. Eur J Nucl Med Mol Imaging. 2020;47:2901–10.

    Article  PubMed  Google Scholar 

  101. Papathoma P-E, Markaki I, Tang C, et al. A replication study, systematic review and meta-analysis of automated image-based diagnosis in parkinsonism. Sci Rep. 2022;12:2763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Schindlbeck KA, Gupta DK, Tang CC, et al. Neuropathological correlation supports automated image-based differential diagnosis in parkinsonism. Eur J Nucl Med Mol Imaging. 2021;48:3522–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Ntetsika T, Papathoma P-E, Markaki I. Novel targeted therapies for Parkinson’s disease. Mol Med. 2021;27:17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Asanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129:2667–78.

    Article  PubMed  Google Scholar 

  105. Hirano S, Asanuma K, Ma Y, et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J Neurosci. 2008;28:4201–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Wang J, Ma Y, Huang Z, et al. Modulation of metabolic brain function by bilateral subthalamic nucleus stimulation in the treatment of Parkinson’s disease. J Neurol. 2010;257:72–8.

    Article  PubMed  Google Scholar 

  107. Ge J, Wang M, Lin W, et al. Metabolic network as an objective biomarker in monitoring deep brain stimulation for Parkinson’s disease: a longitudinal study. EJNMMI Res. 2020;10:131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Trošt M, Su S, Su P, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage. 2006;31:301–7.

    Article  PubMed  Google Scholar 

  109. Rodriguez-Rojas R, Pineda-Pardo JA, Martinez-Fernandez R, et al. Functional impact of subthalamotomy by magnetic resonance–guided focused ultrasound in Parkinson’s disease: a hybrid PET/MR study of resting-state brain metabolism. Eur J Nucl Med Mol Imaging. 2020;47:425–36.

    Article  CAS  PubMed  Google Scholar 

  110. Pourfar M, Tang C, Lin T, et al. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET: Clinical article. J Neurosurg. 2009;110:1278–82.

    Article  PubMed  Google Scholar 

  111. Fukuda M. Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain. 2001;124:1601–9.

    Article  CAS  PubMed  Google Scholar 

  112. Helmich RC, Hallett M, Deuschl G, et al. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135:3206–26.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Zach H, Dirkx MF, Roth D, et al. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease. Neurology. 2020;95:e1461–70.

    Article  CAS  PubMed  Google Scholar 

  114. Xiong Y, Lin J, Bian X, et al. Treatment-specific network modulation of MRI-guided focused ultrasound thalamotomy in essential tremor : modulation of ET-related network by MRgFUS thalamotomy. Neurotherapeutics. 2022;19:1920–31.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Isaias IU, Marotta G, Hirano S, et al. Imaging essential tremor. Mov Disord. 2010;25:679–86.

    Article  PubMed  Google Scholar 

  116. Unadkat P, Eidelberg D. Commentary on: a network approach to understanding the effects of focused ultrasound for essential tremor: insights into pathophysiology, treatment, and imaging biomarkers. Neurotherapeutics. 2022;19:1883–5.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369:2097–105.

    Article  CAS  PubMed  Google Scholar 

  118. Feigin A, Kaplitt MG, Tang C, et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc Natl Acad Sci. 2007;104:19559–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Vo A, Schindlbeck KA, Nguyen N, et al. Adaptive and pathological connectivity responses in Parkinson’s disease brain networks. Cereb Cortex. 2023;33:917–32.

    Article  PubMed  Google Scholar 

  120. Li W, Sauve AA. NAD+ content and its role in mitochondria. Methods Mol Biol. 2015;1241:39–48.

    Article  CAS  PubMed  Google Scholar 

  121. Toomey CE, Heywood WE, Evans JR, et al. Mitochondrial dysfunction is a key pathological driver of early stage Parkinson’s. Acta Neuropathol Commun. 2022;10:134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Lautrup S, Sinclair DA, Mattson MP, et al. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 2019;30:630–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Goetz CG, Wuu J, McDermott MP, et al. Placebo response in Parkinson’s disease: Comparisons among 11 trials covering medical and surgical interventions. Mov Disord. 2008;23:690–9.

    Article  PubMed  Google Scholar 

  124. Oken BS. Placebo effects: clinical aspects and neurobiology. Brain. 2008;131:2812–23.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Enck P, Bingel U, Schedlowski M, et al. The placebo response in medicine: minimize, maximize or personalize? Nat Rev Drug Discov. 2013;12:191–204.

    Article  CAS  PubMed  Google Scholar 

  126. Murray D, Stoessl AJ. Mechanisms and therapeutic implications of the placebo effect in neurological and psychiatric conditions. Pharmacol Ther. 2013;140:306–18.

    Article  CAS  PubMed  Google Scholar 

  127. Quattrone A, Barbagallo G, Cerasa A, et al. Neurobiology of placebo effect in Parkinson’s disease: What we have learned and where we are going. Mov Disord. 2018;33:1213–27.

    Article  PubMed  Google Scholar 

  128. Wager TD, Atlas LY. The neuroscience of placebo effects: connecting context, learning and health. Nat Rev Neurosci. 2015;16:403–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Witek N, Stebbins GT, Goetz CG. What influences placebo and nocebo responses in Parkinson’s disease? Mov Disord. 2018;33:1204–12.

    Article  PubMed  Google Scholar 

  130. de la Fuente-Fernández R, Ruth TJ, Sossi V, et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science. 2001;293:1164–6.

    Article  PubMed  Google Scholar 

  131. de la Fuente-Fernández R, Stoessl AJ. The placebo effect in Parkinson’s disease. Trends Neurosci. 2002;25:302–6.

    Article  PubMed  Google Scholar 

  132. Lidstone SC, Schulzer M, Dinelle K, et al. Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry. 2010;67:857–65.

    Article  CAS  PubMed  Google Scholar 

  133. Benedetti F, Colloca L, Torre E, et al. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat Neurosci. 2004;7:587–8.

    Article  CAS  PubMed  Google Scholar 

  134. Benedetti F, Lanotte M, Colloca L, et al. Electrophysiological properties of thalamic, subthalamic and nigral neurons during the anti-parkinsonian placebo response. J Physiol. 2009;587:3869–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Barbero J, Tang CC, Vo A, et al. Placebo response in Parkinson’s disease (PD) is predicted by expression levels of a specific brain network [abstract]. Mov Disord. 2023.

  136. Barbero J, Vo A, Ma Y, et al. Nicotinamide riboside supplementation for early Parkinson’s disease: Clinical benefit correlates with a distinct resting state network [abstract]. Ann Neurol. 2023.

  137. Unadkat P, Peng S, Ma Y, et al. Modulation of a subthalamic nucleus related network associated with motor response following Deep Brain Stimulation [abstract]. Mov Disord. 2023.

  138. Schindlbeck KA, Vo A, Nguyen N, et al. LRRK2 and GBA variants exert distinct influences on Parkinson’s disease-specific metabolic networks. Cereb Cortex. 2020;30:2867–78.

    Article  PubMed  Google Scholar 

  139. Vo A, Nguyen N, Fujita K, et al. Disordered network structure and function in dystonia: pathological connectivity vs. adaptive responses. Cereb Cortex. 2023;33:6943–58.

    Article  PubMed  Google Scholar 

  140. Riedl V, Utz L, Castrillón G, et al. Metabolic connectivity mapping reveals effective connectivity in the resting human brain. Proc Natl Acad Sci U S A. 2016;113:428–33.

    Article  CAS  PubMed  Google Scholar 

  141. Carson RE, Naganawa M, Toyonaga T, et al. Imaging of synaptic density in neurodegenerative disorders. J Nucl Med. 2022;63:60S-67S.

    Article  CAS  PubMed  Google Scholar 

  142. Finnema SJ, Nabulsi NB, Eid T, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra96-348ra96.

    Article  PubMed  Google Scholar 

  143. Matuskey D, Tinaz S, Wilcox KC, et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann Neurol. 2020;87:329–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Fang XT, Toyonaga T, Hillmer AT, et al. Identifying brain networks in synaptic density PET (11C-UCB-J) with independent component analysis. Neuroimage. 2021;237:118167.

    Article  PubMed  Google Scholar 

  145. Jourdain VA, Schindlbeck KA, Tang CC, et al. Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia. JCI Insight. 2017;2: e96411.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Jourdain VA, Tang CC, Holtbernd F, et al. Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight. 2016;1:e86615.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Huppertz H-J, Möller L, Südmeyer M, et al. Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov Disord. 2016;31:1506–17.

    Article  PubMed  Google Scholar 

  148. Mudali D, Teune LK, Renken RJ, et al. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features. Comput Math Methods Med. 2015;2015:136921.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Manzanera OM, Meles SK, Leenders KL, et al. Scaled subprofile modeling and convolutional neural networks for the identification of Parkinson’s disease in 3D nuclear imaging data. Int J Neural Syst. 2019;29:1950010.

    Article  PubMed  Google Scholar 

  150. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Proces Syst [Internet]. Curran Associates, Inc.; 2017 [cited 2023 Aug 17]. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

  151. Sigcha L, Borzì L, Pavón I, et al. Improvement of Performance in Freezing of Gait detection in Parkinson’s Disease using Transformer networks and a single waist-worn triaxial accelerometer. Eng Appl Artif Intell. 2022;116:105482.

    Article  Google Scholar 

  152. Wang N, Niu X, Yuan Y, et al. A coordinate attention enhanced swin transformer for handwriting recognition of Parkinson’s disease. IET Image Proc. 2023;17:2686–97.

    Article  Google Scholar 

  153. Mohaghegh M, Gascon J. Identifying Parkinson’s disease using multimodal approach and deep learning. 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA). 2021. p. 1–6.

  154. Nogales A, García-Tejedor ÁJ, Maitín AM, et al. BERT learns from electroencephalograms about Parkinson’s disease: transformer-based models for aid diagnosis. IEEE Access. 2022;10:101672–82.

    Article  Google Scholar 

  155. Bhojanapalli S, Chakrabarti A, Glasner D, et al. Understanding robustness of transformers for image classification. 2021 [cited 2023 Aug 17]. p. 10231–10241. Available from: https://openaccess.thecvf.com/content/ICCV2021/html/Bhojanapalli_Understanding_Robustness_of_Transformers_for_Image_Classification_ICCV_2021_paper.html.

  156. Lanchantin J, Wang T, Ordonez V, et al. General multi-label image classification with transformers. 2021 [cited 2023 Aug 17]. p. 16478–16488. Available from: https://openaccess.thecvf.com/content/CVPR2021/html/Lanchantin_General_Multi-Label_Image_Classification_With_Transformers_CVPR_2021_paper.html.

  157. Dai Y, Gao Y, Liu F. TransMed: Transformers advance multi-modal medical image classification. Diagnostics. 2021;11:1384.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Perovnik M, Vo A, Nguyen N, et al. Automated differential diagnosis of dementia syndromes using FDG PET and machine learning. Front Aging Neurosci. 2022;14:1005731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Perovnik M, Rus T, Vo A, et al. Machine learning diagnosis of parkinsonian syndromes: network approach with two different sites [abstract]. Mov Disord. 2023.

  160. Cao Y-H, Yu H, Wu J, et al. Training vision transformers with only 2040 images. In: Avidan S, Brostow G, Cissé M, et al., editors. Computer Vision – ECCV 2022. Cham: Springer Nature Switzerland; 2022. p. 220–37.

    Chapter  Google Scholar 

  161. Lee SH, Lee S, Song BC. Vision transformer for small-size datasets [Internet]. arXiv.org. 2021 [cited 2023 Aug 17]. Available from: https://arxiv.org/abs/2112.13492v1.

  162. Ruan B-K, Shuai H-H, Cheng W-H. Vision transformers: state of the art and research challenges [Internet]. arXiv.org. 2022 [cited 2023 Aug 17]. Available from: https://arxiv.org/abs/2207.03041v1.

  163. Davatzikos C. Machine learning in neuroimaging: Progress and challenges. Neuroimage. 2019;197:652.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Aspects of this work were supported by the National Institute of Neurological Disorders and Stroke (NIH R01 NS105979 to D.E.) and The Michael J. Fox Foundation for Parkinson’s Research (MJFF-008252 to D.E.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Institute of Neurological Disorders and Stroke. The authors wish to thank Ms. Christine Edwards for manuscript preparation and editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eidelberg.

Ethics declarations

Conflicts of Interest

All authors declare no relevant conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, J.A., Unadkat, P., Choi, Y.Y. et al. Functional Brain Networks to Evaluate Treatment Responses in Parkinson’s Disease. Neurotherapeutics 20, 1653–1668 (2023). https://doi.org/10.1007/s13311-023-01433-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01433-w

Keywords

Navigation