Skip to main content
Log in

Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury

  • Review
  • Published:
Neurotherapeutics

Abstract

Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer’s disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130:1080–97.

    Article  Google Scholar 

  2. Magnuson J, Leonessa F, Ling GSF. Neuropathology of explosive blast traumatic brain injury. Curr Neurol Neurosci [Internet]. 2012;12:570--579. Available from: https://link.springer.com/article/10.1007/s11910-012-0303-6.

  3. Bogner J, Corrigan JD, Yi H, Singichetti B, Manchester K, Huang L, et al. Lifetime history of traumatic brain injury and behavioral health problems in a population-based sample. J Head Trauma Rehab. 2020;35:E43-50.

    Article  Google Scholar 

  4. Corrigan JD, Hammond FM. Traumatic brain injury as a chronic health condition. Arch Phys Med Rehab. 2013;94:1199–201.

    Article  Google Scholar 

  5. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehab. 2014;95:986-995.e1.

    Article  Google Scholar 

  6. Haarbauer-Krupa J, Pugh MJ, Prager EM, Harmon N, Wolfe J, Yaffe K. Epidemiology of chronic effects of traumatic brain injury. J Neurotraum. 2021;38:3235–47.

    Article  Google Scholar 

  7. Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. Jama Neurol. 2014;71:1490–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015;66:75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotraum [Internet]. 2010;27:1529--1540. Available from: https://www.liebertpub.com/doi/full/10.1089/neu.2010.1358.

  10. Gilbert M, Snyder C, Corcoran C, Norton MC, Lyketsos CG, Tschanz JT. The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer’s disease: the Cache County Dementia Progression Study*. Int Psychogeriatr. 2014;26:1593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Santopietro J, Yeomans JA, Niemeier JP, White JK, Coughlin CM. Traumatic brain injury and behavioral health: the state of treatment and policy. N C Med J. 2015;76:96–100.

    PubMed  Google Scholar 

  12. Barker S, Paul BD, Pieper AA. Increased risk of aging-related neurodegenerative disease after traumatic brain injury. Biomedicines. 2023;11:1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marklund N, Bellander B-M, Godbolt AK, Levin H, McCrory P, Thelin EP. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J Intern Med. 2019;285:608–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vella MA, Crandall ML, Patel MB. Acute management of traumatic brain injury. Surg Clin N Am. 2017;97:1015–30.

    Article  PubMed  Google Scholar 

  15. Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, et al. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 2022;48:649–66.

    Article  PubMed  Google Scholar 

  16. Redell JB, Maynard ME, Underwood EL, Vita SM, Dash PK, Kobori N. Traumatic brain injury and hippocampal neurogenesis: functional implications. Exp Neurol. 2020;331: 113372.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD, Consiglio A, Lie DC, et al. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Memory. 2009;16:147–54.

    Article  Google Scholar 

  18. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11:1153–61.

    Article  CAS  PubMed  Google Scholar 

  19. Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol. 2003;460:563–72.

    Article  PubMed  Google Scholar 

  21. Pieper AA, Xie S, Capota E, Estill S, i Jo, Zhong J, et al. Discovery of a pro-neurogenic, neuroprotective chemical. Cell [Internet]. 2010;142:39--51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930815/.

  22. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.

    Article  PubMed  Google Scholar 

  23. Dash PK, Mach SA, Moore AN. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res. 2001;63:313–9.

    Article  CAS  PubMed  Google Scholar 

  24. Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotraum. 2014;31:476–86.

    Article  Google Scholar 

  25. Zhang Z, Ishrat S, O’Bryan M, Klein B, Saraswati M, Robertson C, et al. Pediatric traumatic brain injury causes long-term deficits in adult hippocampal neurogenesis and cognition. J Neurotraum. 2020;37:1656–67.

    Article  Google Scholar 

  26. Atkins CM, Truettner JS, Lotocki G, Sanchez-Molano J, Kang Y, Alonso OF, et al. Post-traumatic seizure susceptibility is attenuated by hypothermia therapy. Eur J Neurosci. 2010;32:1912–20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blaiss CA, Yu T-S, Zhang G, Chen J, Dimchev G, Parada LF, et al. Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. J Neurosci. 2011;31:4906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scharfman HE, Hen R. Is more neurogenesis always better? Science. 2007;315:336–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacMillan KS, Naidoo J, Liang J, Melito L, Williams NS, Morlock L, et al. Development of proneurogenic, neuroprotective small molecules. J Am Chem Soc. 2011;133:1428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pieper AA, McKnight SL, Ready JM. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases. Chem Soc Rev [Internet]. 2014;43:6716--6726. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237066/.

  31. Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc National Acad Sci. 2005;102:14052–7.

    Article  CAS  Google Scholar 

  32. Stanco A, Pla R, Vogt D, Chen Y, Mandal S, Walker J, et al. NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron. 2014;84:940–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pickard BS, Pieper AA, Porteous DJ, Blackwood DH, Muir WJ. The NPAS3 gene—emerging evidence for a role in psychiatric illness. Ann Med. 2006;38:439–48.

    Article  CAS  PubMed  Google Scholar 

  34. Michaelson JJ, Shin M-K, Koh J-Y, Brueggeman L, Zhang A, Katzman A, et al. Neuronal PAS domain proteins 1 and 3 are master regulators of neuropsychiatric risk genes. Biol Psychiat. 2017;82:213–23.

    Article  CAS  PubMed  Google Scholar 

  35. Naidoo J, Bemben CJ, Allwein SR, Liang J, Pieper AA, Ready JM. Development of a scalable synthesis of P7C3-A20, a potent neuroprotective agent. Tetrahedron Lett. 2013;54:4429–31.

    Article  CAS  Google Scholar 

  36. Naidoo J, Jesus-Cortes HD, Huntington P, Estill S, Morlock LK, Starwalt R, et al. Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(−)-P7C3-S243], with improved druglike properties. J Med Chem. 2014;57:3746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bauman MD, Schumann CM, Carlson EL, Taylor SL, Vázquez-Rosa E, Cintrón-Pérez CJ, et al. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl Psychiat. 2018;8:202.

    Article  Google Scholar 

  38. Pieper AA, McKnight SL. Benefits of enhancing nicotinamide adenine dinucleotide levels in damaged or diseased nerve cells. Cold Spring Harb Sym. 2018;83:207–17.

    Article  Google Scholar 

  39. Satchell MA, Zhang X, Kochanek PM, Dixon CE, Jenkins LW, Melick J, et al. A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3γ. J Neurochem. 2003;85:697–708.

    Article  CAS  PubMed  Google Scholar 

  40. Clark RSB, Vagni VA, Nathaniel PD, Jenkins LW, Dixon CE, Szab C. Local administration of the poly(ADP-ribose) polymerase inhibitor INO-1001 prevents NAD depletion and improves water maze performance after traumatic brain injury in mice. J Neurotraum. 2007;24:1399–405.

    Article  Google Scholar 

  41. Blaya MO, Wasserman JM, Pieper AA, Sick TJ, Bramlett HM, Dietrich WD. Neurotherapeutic capacity of P7C3 agents for the treatment of traumatic brain injury. Neuropharmacology. 2019;145:268–82.

    Article  CAS  PubMed  Google Scholar 

  42. Stovell MG, Mada MO, Helmy A, Carpenter TA, Thelin EP, Yan J-L, et al. The effect of succinate on brain NADH/NAD+ redox state and high energy phosphate metabolism in acute traumatic brain injury. Sci Rep-uk. 2018;8:11140.

    Article  Google Scholar 

  43. Yin TC, Voorhees JR, Genova RM, Davis KC, Madison AM, Britt JK, et al. Acute axonal degeneration drives development of cognitive, motor, and visual deficits after blast-mediated traumatic brain injury in mice. Eneuro. 2016;3:ENEURO.0220–16.2016.

  44. Shin M-K, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184:2715-2732.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain. 2016;139:1094–105.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Loris ZB, Pieper AA, Dietrich WD. The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol. 2017;290:63–73.

    Article  CAS  PubMed  Google Scholar 

  47. Wang G, Han T, Nijhawan D, Theodoropoulos P, Naidoo J, Yadavalli S, et al. P7C3 Neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell. 2014;158:1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Landry T, Huang H. Mini review: the relationship between energy status and adult hippocampal neurogenesis. Neurosci Lett. 2021;765: 136261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci. 2008;105:15599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saharan S, Jhaveri DJ, Bartlett PF. SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J Neurosci Res. 2013;91:642–59.

    Article  CAS  PubMed  Google Scholar 

  51. Stein LR, Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 2014;33:1321–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang S, Xu T, Li W, Miao C. Targeting nicotinamide phosphoribosyltransferase as a potential therapeutic strategy to restore adult neurogenesis. Cns Neurosci Ther. 2016;22:431–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Okun E, Marton D, Cohen D, Griffioen K, Kanfi Y, Illouz T, et al. Sirt6 alters adult hippocampal neurogenesis. PLoS ONE. 2017;12: e0179681.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li D, Chen N-N, Cao J-M, Sun W-P, Zhou Y-M, Li C-Y, et al. BRCA1 as a nicotinamide adenine dinucleotide (NAD)-dependent metabolic switch in ovarian cancer. Cell Cycle. 2014;13:2564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD metabolism in cancer therapeutics. Front Oncol. 2018;8:622.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maric T, Bazhin A, Khodakivskyi P, Mikhaylov G, Solodnikova E, Yevtodiyenko A, et al. A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism. Biosens Bioelectron. 2023;220: 114826.

    Article  CAS  PubMed  Google Scholar 

  57. Stoica BA, Loane DJ, Zhao Z, Kabadi SV, Hanscom M, Byrnes KR, et al. PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J Neurotrauma. 2014;31:758–72.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Whalen MJ, Clark RSB, Dixon CE, Robichaud P, Marion DW, Vagni V, et al. Reduction of cognitive and motor deficits after traumatic brain injury in mice deficient in poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab. 1999;19:835–42.

    Article  CAS  PubMed  Google Scholar 

  59. LaPlaca MC, Zhang J, Raghupathi R, Li J-H, Smith F, Bareyre FM, et al. Pharmacologic inhibition of poly(ADP-Ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma. 2001;18:369–76.

    Article  CAS  PubMed  Google Scholar 

  60. Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F, Kochanek PM, et al. Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem. 2008;104:1700–11.

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH. Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res. 1999;829:46–54.

    Article  CAS  PubMed  Google Scholar 

  62. Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci. 1999;20:171–81.

    Article  CAS  PubMed  Google Scholar 

  63. LaPlaca MC, Raghupathi R, Verma A, Pieper AA, Saatman KE, Snyder SH, et al. Temporal patterns of poly(ADP-Ribose) polymerase activation in the cortex following experimental brain injury in the rat. J Neurochem. 1999;73:205–13.

    Article  CAS  PubMed  Google Scholar 

  64. Pieper AA, Blackshaw S, Clements EE, Brat DJ, Krug DK, White AJ, et al. Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate–nitric oxide neurotransmission. Proc Natl Acad Sci. 2000;97:1845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marion CM, McDaniel DP, Armstrong RC. Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp Neurol. 2019;321: 113040.

    Article  CAS  PubMed  Google Scholar 

  66. Bradshaw DV, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ, et al. Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathol Commun. 2021;9:89.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Maynard ME, Redell JB, Zhao J, Hood KN, Vita SM, Kobori N, et al. Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury. Exp Neurol. 2020;327: 113207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alexandris AS, Lee Y, Lehar M, Alam Z, Samineni P, Tripathi SJ, et al. Traumatic axonopathy in spinal tracts after impact acceleration head injury: ultrastructural observations and evidence of SARM1-dependent axonal degeneration. Exp Neurol. 2023;359: 114252.

    Article  CAS  PubMed  Google Scholar 

  69. Hill CS, Menon DK, Coleman MP. P7C3-A20 neuroprotection is independent of Wallerian degeneration in primary neuronal culture. NeuroReport. 2018;29:1544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jesús-Cortés HD, Xu P, Drawbridge J, Estill S, i Jo, Huntington P, et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. P Natl Acad Sci Usa [Internet]. 2012;109:17010--17015. Available from: http://www.pnas.org/content/109/42/17010.

  71. Jesús-Cortés HD, Miller AD, Britt JK, DeMarco AJ, Jesús-Cortés MD, Stuebing E, et al. Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson’s disease. Npj Park Dis. 2015;1:15010.

    Article  Google Scholar 

  72. Gu C, Hu Q, Wu J, Mu C, Ren H, Liu C-F, et al. P7C3 inhibits LPS-induced microglial activation to protect dopaminergic neurons against inflammatory factor-induced cell death in vitro and in vivo. Front Cell Neurosci. 2018;12:400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gu C, Zhang Y, Hu Q, Wu J, Ren H, Liu C-F, et al. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis. 2017;8:e2858–e2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duan F-X, Shi Y-J, Chen J, Ding S-Q, Wang F-C, Tang J, et al. Neuroprotective effects of P7C3 against spinal cord injury in rats. Exp Biol Med. 2019;244:1680–7.

    Article  Google Scholar 

  75. Yang Y, Fan Y, Zhang H, Zhang Q, Zhao Y, Xiao Z, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Biomaterials. 2021;269: 120479.

    Article  CAS  PubMed  Google Scholar 

  76. Tesla R, Wolf HP, Xu P, Drawbridge J, Estill S, i Jo, et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc National Acad Sci [Internet]. 2012;109:17016--17021. Available from: http://www.pnas.org/content/109/42/17016.

  77. Voorhees JR, Remy MT, Cintrón-Pérez CJ, Rassi EE, Khan MZ, Dutca LM, et al. (−)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol Psychiat. 2018;84:488–98.

    Article  CAS  PubMed  Google Scholar 

  78. Li X, Zhang Y, Zhang W-F, Xiao D, Ciric B, Rostami A, et al. P7C3 attenuates CNS autoimmunity by inhibiting Th17 cell differentiation. Cell Mol Immunol. 2021;18:1565–7.

    Article  CAS  PubMed  Google Scholar 

  79. Kemp SWP, Szynkaruk M, Stanoulis KN, Wood MD, Liu EH, Willand MP, et al. Pharmacologic rescue of motor and sensory function by the neuroprotective compound P7C3 following neonatal nerve injury. Neuroscience. 2015;284:202–16.

    Article  CAS  PubMed  Google Scholar 

  80. LoCoco PM, Risinger AL, Smith HR, Chavera TS, Berg KA, Clarke WP. Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy. Elife. 2017;6: e29626.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oku H, Morishita S, Horie T, Nishikawa Y, Kida T, Mimura M, et al. Protective effect of P7C3 on retinal ganglion cells from optic nerve injury. Jpn J Ophthalmol. 2017;61:195–203.

    Article  CAS  PubMed  Google Scholar 

  82. Oku H, Morishita S, Horie T, Kida T, Mimura M, Kojima S, et al. P7C3 suppresses neuroinflammation and protects retinal ganglion cells of rats from optic nerve crush. Investigative Opthalmology Vis Sci. 2017;58:4877.

    Article  CAS  Google Scholar 

  83. Loris ZB, Hynton JR, Pieper AA, Dietrich WD. Beneficial effects of delayed P7C3-A20 treatment after transient MCAO in rats. Transl Stroke Res. 2018;9:146–56.

    Article  CAS  PubMed  Google Scholar 

  84. Bai J, Zeng S, Zhu J, Fu C, He M, Zhu J, et al. The small molecule P7C3-A20 exerts neuroprotective effects in a hypoxic–ischemic encephalopathy model via activation of PI3K/AKT/GSK3β signaling. Neuroscience. 2020;441:197–208.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y-H, Liou K-T, Tsai K-C, Liu H-K, Yang L-M, Chern C-M, et al. GSK-3 inhibition through GLP-1R allosteric activation mediates the neurogenesis promoting effect of P7C3 after cerebral ischemic/reperfusional injury in mice. Toxicol Appl Pharm. 2018;357:88–105.

    Article  CAS  Google Scholar 

  86. Wang S, Wang Z, Wang X, Zhang X, Xu T, Miao C. Humanized cerebral organoids-based ischemic stroke model for discovering of potential anti-stroke agents. Acta Pharmacol Sin. 2023;44:513–23.

    Article  CAS  PubMed  Google Scholar 

  87. Wang S, Xu T, Wang X, Guan Y, Zhang S, Wang P, et al. Neuroprotective efficacy of an aminopropyl carbazole derivative P7C3-A20 in ischemic stroke. Cns Neurosci Ther. 2016;22:782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen W, Jia W, Wu C, Chen L, Sun K, Wang J, et al. The neurogenic compound P7C3 regulates the aerobic glycolysis by targeting phosphoglycerate kinase 1 in glioma. Frontiers Oncol. 2021;11: 644492.

    Article  CAS  Google Scholar 

  89. Rahman MT, Bailey EM, Gansemer BM, Pieper AA, Manak JR, Green SH. Anti-inflammatory therapy protects spiral ganglion neurons after aminoglycoside antibiotic-induced hair cell loss. Neurotherapeutics. 2023;1–24.

  90. Latchney SE, Jaramillo TC, Rivera PD, Eisch AJ, Powell CM. Chronic P7C3 treatment restores hippocampal neurogenesis. Neurosci Lett. 2015;591:86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Walker AK, Rivera PD, Wang Q, Chuang J-C, Tran S, Osborne-Lawrence S, et al. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol Psychiatr [Internet]. 2015;20:500--508. Available from: https://www.nature.com/articles/mp201434.

  92. Lee AS, Jesús-Cortés HD, Kabir ZD, Knobbe W, Orr M, Burgdorf C, et al. The neuropsychiatric disease-associated gene cacna1c mediates survival of young hippocampal neurons. Eneuro [Internet]. 2016;3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819284/.

  93. Jesús-Cortés HD, Rajadhyaksha AM, Pieper AA. Cacna1c: protecting young hippocampal neurons in the adult brain. Neurogenesis. 2016;3: e1231160.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bavley CC, Kabir ZD, Walsh AP, Kosovsky M, Hackett J, Sun H, et al. Dopamine D1R-neuron cacna1c deficiency: a new model of extinction therapy-resistant post-traumatic stress. Mol Psychiatr. 2020;1–13.

  95. Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, et al. Maternal P7C3-A20 treatment protects offspring from neuropsychiatric sequelae of prenatal stress. Antioxid Redox Sign. 2021;

  96. Schroeder R, Nguyen L, Pieper AA, Stevens HE. Maternal treatment with P7C3-A20 protects from impaired maternal care after chronic gestational stress. Behav Brain Res. 2022;416: 113558.

    Article  CAS  PubMed  Google Scholar 

  97. Duman G, Alcigir ME, Yavuz H. Necroptosis mediated by receptor interacting protein kinase 3 as critical players in experimental congenital hypothyroidism related neuronal damage. North Clin Ýstanbul. 2021;8:472–8.

    Google Scholar 

  98. Dogan HO, Alcigir ME. The Protective effect of P7C3 against DNA and neuron damage in rat pups with congenital hypothyroidism. Biomed Pharmacother. 2018;99:499–503.

    Article  CAS  PubMed  Google Scholar 

  99. Manickam R, Tur J, Badole SL, Chapalamadugu KC, Sinha P, Wang Z, et al. Nampt activator P7C3 ameliorates diabetes and improves skeletal muscle function modulating cell metabolism and lipid mediators. J Cachexia Sarcopenia Muscle. 2022;13:1177–96.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tur J, Badole SL, Manickam R, Chapalamadugu KC, Xuan W, Guida W, et al. Cardioprotective effects of P7C3 in diabetic hearts via Nampt activation. J Pharmacol Exp Ther. 2022;382:JPET-AR-2022–001122.

  101. Hua X, Sun D, Zhang W, Fu J, Tong J, Sun S, et al. P7C3-A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP-activated protein kinase/CREB regulated transcription coactivator 2 pathway. Brit J Pharmacol. 2021;178:2111–30.

    Article  CAS  Google Scholar 

  102. Zhang LQ, Nsumu M, Huang P, Heruth DP, Riordan SM, Shortt K, et al. Novel protective role of nicotinamide phosphoribosyltransferase in acetaminophen-induced acute liver injury in mice. Am J Pathology. 2018;188:1640–52.

    Article  CAS  Google Scholar 

  103. Ryu SW, Kim YO, Kim H-B, Oh SB, Choi JI, Yoon MH. Antinociceptive effect of intrathecal P7C3 via GABA in a rat model of inflammatory pain. Eur J Pharmacol. 2021;899: 174029.

    Article  CAS  PubMed  Google Scholar 

  104. Li B, Shi Y, Liu M, Wu F, Hu X, Yu F, et al. Attenuates of NAD+ impair BMSC osteogenesis and fracture repair through OXPHOS. Stem Cell Res Ther. 2022;13:77.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, et al. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res. 2023;11:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhuan Q, Li J, Du X, Zhang L, Meng L, Cheng K, et al. Nampt affects mitochondrial function in aged oocytes by mediating the downstream effector FoxO3a. J Cell Physiol. 2022;237:647–59.

    Article  CAS  PubMed  Google Scholar 

  107. Stanley TD. Beyond publication bias J Econ Surv. 2005;19:309–45.

    Article  Google Scholar 

  108. Shin M-K, Vázquez-Rosa E, Cintrón-Pérez CJ, Riegel WA, Harper MM, Ritzel D, et al. Characterization of the jet-flow overpressure model of traumatic brain injury in mice. Neurotrauma Reports. 2021;2:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Vázquez-Rosa E, Shin M-K, Dhar M, Chaubey K, Cintrón-Pérez CJ, Tang X, et al. P7C3-A20 treatment one year after TBI in mice repairs the blood–brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc National Acad Sci. 2020;117:27667–75.

    Article  Google Scholar 

  110. Yin TC, Britt JK, De Jesús-Cortés H, Lu Y, Genova RM, Khan MZ, et al. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Reports [Internet]. 2014;8:1731--1740. Available from: https://www.cell.com/cell-reports/abstract/S2211-1247(14)00706-2.

  111. Vázquez-Rosa E, Watson MR, Sahn JJ, Hodges TR, Schroeder RE, Cintrón-Pérez CJ, et al. Neuroprotective efficacy of a sigma 2 receptor/TMEM97 modulator (DKR-1677) after traumatic brain injury. Acs Chem Neurosci. 2018;10:1595–602.

    Article  PubMed  Google Scholar 

  112. Dutca LM, Stasheff SF, Hedberg-Buenz A, Rudd DS, Batra N, Blodi FR, et al. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest Ophth Vis Sci. 2014;55:8330–41.

    Article  CAS  Google Scholar 

  113. Wattiez A-S, Castonguay WC, Gaul OJ, Waite JS, Schmidt CM, Reis AS, et al. Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles. Pain. 2020;162:1163–75.

    Article  Google Scholar 

  114. Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB, et al. Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci. 2020;40:2960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Song H-L, Kim N-Y, Park J, Kim MI, Jeon Y-N, Lee S-J, et al. Monoclonal antibody Y01 prevents tauopathy progression induced by lysine280-acetylated tau in cell and mouse models. J Clin Investig. 2023;133.

  116. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60:1566–76.

    Article  CAS  PubMed  Google Scholar 

  117. Montinari MR, Minelli S, Caterina RD. The first 3500 years of aspirin history from its roots – a concise summary. Vasc Pharmacol. 2019;113:1–8.

    Article  CAS  Google Scholar 

  118. Swinney DC. Phenotypic Drug Discovery. 2020;1–19.

  119. Pereira VS, Hiroaki-Sato VA. A brief history of antidepressant drug development: from tricyclics to beyond ketamine. Acta Neuropsychiatr. 2018;30:307–22.

    Article  PubMed  Google Scholar 

  120. Kuhn R. Treatment of depressive states with an iminodibenzyl derivative (G 22355). Schweiz Med Wochenschr. 1957;87:1135–40.

    CAS  PubMed  Google Scholar 

  121. Brown WA, Rosdolsky M. The clinical discovery of imipramine. Am J Psychiatry. 2015;172:426–9.

    Article  PubMed  Google Scholar 

  122. Cade JFJ. Lithium salts in the treatment of psychotic excitement. Méd J Aust. 1949;2:349–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant to AAP from the Valour Foundation and a grant to AAP from the AHA/Allen Initiative in Brain Health and Cognitive Impairment (19PABH134580006). AAP was also supported as the Rebecca E. Barchas, MD, Professor in Translational Psychiatry of Case Western Reserve University and as the Morley-Mather Chair in Neuropsychiatry of University Hospitals of Cleveland Medical Center. EM was supported by NIH T32 AG071474. PSS was supported by NIH T32 GM007250 and NIA F30 AG076183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Pieper.

Ethics declarations

Conflict of Interest

None.

Disclaimer

One of the authors (AAP) holds patents related to P7C3 compounds.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridharan, P.S., Miller, E. & Pieper, A.A. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 20, 1616–1628 (2023). https://doi.org/10.1007/s13311-023-01427-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01427-8

Keywords

Navigation