Skip to main content
Log in

N-Acetylcysteine and Probenecid Adjuvant Therapy for Traumatic Brain Injury

  • Review
  • Published:
Neurotherapeutics

Abstract

N-Acetylcysteine (NAC) has shown promise as a putative neurotherapeutic for traumatic brain injury (TBI). Yet, many such promising compounds have limited ability to cross the blood–brain barrier (BBB), achieve therapeutic concentrations in brain, demonstrate target engagement, among other things, that have hampered successful translation. A pharmacologic strategy for overcoming poor BBB permeability and/or efflux out of the brain of organic acid-based, small molecule therapeutics such as NAC is co-administration with a targeted or nonselective membrane transporter inhibitor. Probenecid is a classic ATP-binding cassette and solute carrier inhibitor that blocks transport of organic acids, including NAC. Accordingly, combination therapy using probenecid as an adjuvant with NAC represents a logical neurotherapeutic strategy for treatment of TBI (and other CNS diseases). We have completed a proof-of-concept pilot study using this drug combination in children with severe TBI—the Pro-NAC Trial (ClinicalTrials.gov NCT01322009). In this review, we will discuss the background and rationale for combination therapy with probenecid and NAC in TBI, providing justification for further clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Imperato PJ, Palanca LM, Fernandez JP. Successful treatment with the mucolytic agent acetylcysteine. Am Rev Respir Dis. 1964;90:111–5.

    CAS  PubMed  Google Scholar 

  2. Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N Engl J Med. 1988;319(24):1557–62.

  3. Bhatti J, Nascimento B, Akhtar U, Rhind SG, Tien H, Nathens A, et al. Systematic review of human and animal studies examining the efficacy and safety of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) in traumatic brain injury: impact on neurofunctional outcome and biomarkers of oxidative stress and inflammation. Front Neurol. 2017;8:744.

    Article  PubMed  Google Scholar 

  4. Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294–321.

  5. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–29.

    Article  CAS  PubMed  Google Scholar 

  6. Colin-Gonzalez AL, Santamaria A. Probenecid: an emerging tool for neuroprotection. CNS Neurol Disord Drug Targets. 2013;12(7):1050–65.

    Article  CAS  PubMed  Google Scholar 

  7. Clark RSB, Empey PE, Bayir H, Rosario BL, Poloyac SM, Kochanek PM, et al. Phase I randomized clinical trial of N-acetylcysteine in combination with an adjuvant probenecid for treatment of severe traumatic brain injury in children. PLoS ONE. 2017;12(7): e0180280.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lauterburg BH, Corcoran GB, Mitchell JR. Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo. J Clin Invest. 1983;71(4):980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uttamsingh V, Keller DA, Anders MW. Acylase I-catalyzed deacetylation of N-acetyl-L-cysteine and S-alkyl-N-acetyl-L-cysteines. Chem Res Toxicol. 1998;11(7):800–9.

    Article  CAS  PubMed  Google Scholar 

  10. Paul BD, Sbodio JI, Snyder SH. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol Sci. 2018;39(5):513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McBean GJ. Cysteine, glutathione, and thiol redox balance in astrocytes. Antioxidants (Basel). 2017;6(3).

  12. Ellis EF, Dodson LY, Police RJ. Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J Neurosurg. 1991;75(5):774–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hameed MQ, Hodgson N, Lee HHC, Pascual-Leone A, MacMullin PC, Jannati A, et al. N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cereb Cortex. 2023;33(7):4070–84.

    Article  PubMed  Google Scholar 

  14. Hicdonmez T, Kanter M, Tiryaki M, Parsak T, Cobanoglu S. Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem Res. 2006;31(4):473–81.

    Article  CAS  PubMed  Google Scholar 

  15. Senol N, Naziroglu M, Yuruker V. N-acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats. Neurochem Res. 2014;39(4):685–92.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong Y, Peterson PL, Lee CP. Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma. 1999;16(11):1067–82.

    Article  CAS  PubMed  Google Scholar 

  17. Eakin K, Baratz-Goldstein R, Pick CG, Zindel O, Balaban CD, Hoffer ME, et al. Efficacy of N-acetyl cysteine in traumatic brain injury. PLoS ONE. 2014;9(4): e90617.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yi JH, Hazell AS. N-acetylcysteine attenuates early induction of heme oxygenase-1 following traumatic brain injury. Brain Res. 2005;1033(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  19. Yi JH, Hoover R, McIntosh TK, Hazell AS. Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine. J Neurotrauma. 2006;23(1):86–96.

    Article  PubMed  Google Scholar 

  20. Abdel Baki SG, Schwab B, Haber M, Fenton AA, Bergold PJ. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS ONE. 2010;5(8): e12490.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haber M, Abdel Baki SG, Grin’kina NM, Irizarry R, Ershova A, Orsi S, et al. Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol. 2013;249:169–77.

  22. Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J, et al. Minocycline plus N-acetylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab. 2018;38(8):1312–26.

    Article  CAS  PubMed  Google Scholar 

  23. Lawless S, Bergold PJ. Better together? Treating traumatic brain injury with minocycline plus N-acetylcysteine. Neural Regen Res. 2022;17(12):2589–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sangobowale M, Nikulina E, Bergold PJ. Minocycline plus N-acetylcysteine protect oligodendrocytes when first dosed 12 hours after closed head injury in mice. Neurosci Lett. 2018;682:16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sangobowale MA, Grin’kina NM, Whitney K, Nikulina E, St Laurent-Ariot K, Ho JS, et al. Minocycline plus N-acetylcysteine reduce behavioral deficits and improve histology with a clinically useful time window. J Neurotrauma. 2018;35(7):907–17.

  26. Whitney K, Nikulina E, Rahman SN, Alexis A, Bergold PJ. Delayed dosing of minocycline plus N-acetylcysteine reduces neurodegeneration in distal brain regions and restores spatial memory after experimental traumatic brain injury. Exp Neurol. 2021;345: 113816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naziroglu M, Senol N, Ghazizadeh V, Yuruker V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell Mol Neurobiol. 2014;34(6):895–903.

    Article  CAS  PubMed  Google Scholar 

  28. Kyyriainen J, Kajevu N, Banuelos I, Lara L, Lipponen A, Balosso S, et al. Targeting oxidative stress with antioxidant duotherapy after experimental traumatic brain injury. Int J Mol Sci. 2021;22(19).

  29. Efendioglu M, Basaran R, Akca M, Ceman D, Demirtas C, Yildirim M. Combination therapy of gabapentin and N-acetylcysteine against posttraumatic epilepsy in rats. Neurochem Res. 2020;45(8):1802–12.

    Article  PubMed  Google Scholar 

  30. Du X, West MB, Cai Q, Cheng W, Ewert DL, Li W, et al. Antioxidants reduce neurodegeneration and accumulation of pathologic tau proteins in the auditory system after blast exposure. Free Radic Biol Med. 2017;108:627–43.

    Article  CAS  PubMed  Google Scholar 

  31. Anders MW, Dekant W. Aminoacylases. Adv Pharmacol. 1994;27:431–48.

    Article  CAS  PubMed  Google Scholar 

  32. Wade LA, Brady HM. Cysteine and cystine transport at the blood-brain barrier. J Neurochem. 1981;37(3):730–4.

    Article  CAS  PubMed  Google Scholar 

  33. Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, et al. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol. 2014;257:106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Wang HD, Zhou XM, Fang J, Zhu L, Ding K. N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury. Drug Des Devel Ther. 2018;12:4117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawoos U, Abutarboush R, Zarriello S, Qadri A, Ahlers ST, McCarron RM, et al. N-acetylcysteine amide ameliorates blast-induced changes in blood-brain barrier integrity in rats. Front Neurol. 2019;10:650.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kawoos U, McCarron RM, Chavko M. Protective effect of N-acetylcysteine amide on blast-induced increase in intracranial pressure in rats. Front Neurol. 2017;8:219.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab. 2008;28(3):540–50.

    Article  CAS  PubMed  Google Scholar 

  38. Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS ONE. 2013;8(1): e54163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McPherson RA, Mangram AJ, Barletta JF, Dzandu JK. N -acetylcysteine is associated with reduction of postconcussive symptoms in elderly patients: a pilot study. J Trauma Acute Care Surg. 2022;93(5):644–9.

    Article  CAS  PubMed  Google Scholar 

  40. Burnell JM, Kirby WM. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Invest. 1951;30(7):697–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, et al. Membrane transporters in traumatic brain injury: pathological, pharmacotherapeutic, and developmental implications. Exp Neurol. 2019;317:10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wirthgen E, Hoeflich A, Rebl A, Gunther J. Kynurenic acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol. 2017;8:1957.

    Article  PubMed  Google Scholar 

  44. Hammond CL, Marchan R, Krance SM, Ballatori N. Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J Biol Chem. 2007;282(19):14337–47.

    Article  CAS  PubMed  Google Scholar 

  45. Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 2019;47(3):410–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K, et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E(2) to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol. 2018;84(6):854–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ 3rd, Nonner D, Bullock MR, et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab. 2014;34(4):621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inoue M, Okajima K, Morino Y. Renal transtubular transport of mercapturic acid in vivo. Biochim Biophys Acta. 1981;641(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hagos FT, Daood MJ, Ocque JA, Nolin TD, Bayir H, Poloyac SM, et al. Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. Xenobiotica; the fate of foreign compounds in biological systems. 2017;47(4):346–53.

    Article  CAS  PubMed  Google Scholar 

  50. Du L, Empey PE, Ji J, Chao H, Kochanek PM, Bayir H, et al. Probenecid and N-acetylcysteine prevent loss of intracellular glutathione and inhibit neuronal death after mechanical stretch injury in vitro. J Neurotrauma. 2016;33(20):1913–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Choi BY, Kim IY, Kim JH, Lee BE, Lee SH, Kho AR, et al. Decreased cysteine uptake by EAAC1 gene deletion exacerbates neuronal oxidative stress and neuronal death after traumatic brain injury. Amino Acids. 2016;48(7):1619–29.

    Article  CAS  PubMed  Google Scholar 

  52. Katz M, Won SJ, Park Y, Orr A, Jones DP, Swanson RA, et al. Cerebrospinal fluid concentrations of N-acetylcysteine after oral administration in Parkinson’ s disease. Parkinsonism Relat Disord. 2015;21(5):500–3.

    Article  PubMed  Google Scholar 

  53. Spence EEM, Shwetz S, Ryan L, Anton N, Joffe AR. Non-intentional N-acetylcysteine overdose associated with cerebral edema and brain death. Case Rep Gastroenterol. 2023;17(1):96–103.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006;440(7087):1073–7.

    Article  CAS  PubMed  Google Scholar 

  55. Hagos FT, Empey PE, Wang P, Ma X, Poloyac SM, Bayir H, et al. Exploratory application of neuropharmacometabolomics in severe childhood traumatic brain injury. Crit Care Med. 2018;46(9):1471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Pro-NAC trial and pharmacometabolomic study were supported by R01 NS069247 (RSBC, PEE, PMK, MJB). PMK is supported by the Ake Grenvik Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. B. Clark.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, R.S.B., Empey, P.E., Kochanek, P.M. et al. N-Acetylcysteine and Probenecid Adjuvant Therapy for Traumatic Brain Injury. Neurotherapeutics 20, 1529–1537 (2023). https://doi.org/10.1007/s13311-023-01422-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01422-z

Keywords

Navigation