Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental syndrome characterized by increased anxiety, repetitive behaviors, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we have identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. In this study, we test a specific candidate mechanism for engagement of multielectrode array (MEA) EEG biomarkers in the FXS mouse model. We administered TAK-063, a potent, selective, and orally active phosphodiesterase 10A (PDE10A) inhibitor, to Fmr1 KO mice, and examined its effects on MEA EEG biomarkers. We demonstrate significant dose-related amelioration of inter-trial phase coherence (ITPC) to temporally modulated auditory stimuli by TAK-063 in Fmr1 KO mice. Our data suggest that TAK-063 improves cortical auditory stimulus processing in Fmr1 KO mice, without significantly depressing baseline EEG power or causing any noticeable sedation or behavioral side effects. Thus, the PDE10A inhibitor TAK-063 has salutary effects on normalizing EEG biomarkers in a mouse model of FXS and should be pursued in further translational treatment development.
This is a preview of subscription content, access via your institution.









Change history
30 March 2021
A Correction to this paper has been published: https://doi.org/10.1007/s13311-021-01042-5
Abbreviations
- EEG:
-
Electroencephalography
- FMRP:
-
Fragile X mental retardation protein
- FXS:
-
Fragile X syndrome
- LC/MS/MS:
-
Liquid chromatography/tandem mass spectrometry
- ITPC:
-
Inter-trial phase coherence (phase locking factor)
- K/X:
-
Ketamine/xylazine
- MEA:
-
Multielectrode array
- PDE:
-
Phosphodiesterase
- PK:
-
Pharmacokinetics
References
- 1.
Crawford DC, Acuña JM, Sherman SL. FMR1 and the fragile X syndrome: Human genome epidemiology review. Genet Med, 3, 359-371 (2001).
- 2.
Yu S, Pritchard M, Kremer E et al. Fragile X genotype characterized by an unstable region of DNA. Science, 252, 1179-1181 (1991).
- 3.
Darnell Jennifer C, Van Driesche Sarah J, Zhang C et al. FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell, 146, 247-261 (2011).
- 4.
Abbeduto L, Hagerman RJ. Language and communication in fragile X syndrome. Ment Retard Dev Disabil Res Rev, 3, 313-322 (1997).
- 5.
Berry-Kravis E. Epilepsy in fragile X syndrome. Dev Med Child Neurol, 44, 724-728 (2002).
- 6.
Hagerman RJ, Berry-Kravis E, Kaufmann WE et al. Advances in the treatment of fragile X syndrome. Pediatrics, 123, 378-390 (2009).
- 7.
Miller LJ, McIntosh DN, McGrath J et al. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: A preliminary report. Am J Med Genet, 83, 268-279 (1999).
- 8.
Musumeci SA, Hagerman RJ, Ferri R et al. Epilepsy and EEG Findings in Males with Fragile X Syndrome. Epilepsia, 40, 1092-1099 (1999).
- 9.
Roberts JE, Hatton DD, Bailey DB. Development and Behavior of Male Toddlers With Fragile X Syndrome. J Early Interv, 24, 207-223 (2001).
- 10.
Sabaratnam M, Vroegop PG, Gangadharan SK. Epilepsy and EEG findings in 18 males with fragile X syndrome. Seizure, 10, 60-63 (2001).
- 11.
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev, 76(Pt B), 235-253 (2017).
- 12.
Van der Molen MJW, Huizinga M, Huizenga HM et al. Profiling Fragile X Syndrome in males: Strengths and weaknesses in cognitive abilities. Res Dev Disabil, 31, 426-439 (2010).
- 13.
Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD. The fra(X) syndrome: Neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet, 38, 476-480 (1991).
- 14.
Castrén M, Paakkonen A, Tarkka IM, Ryynanen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr, 15(3), 165-171 (2003).
- 15.
Schneider A, Leigh MJ, Adams P et al. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol, 27(10), 956-963 (2013).
- 16.
Berry-Kravis EM, Lindemann L, Jønch AE et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov, 17, 280-299 (2018).
- 17.
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Reusable Multielectrode Array Technique for Electroencephalography in Awake Freely Moving Mice. Front Integr Neurosci, 12, 53 (2018).
- 18.
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome. Neurobiol Dis, 138, 104794 (2020).
- 19.
Ethridge LE, White SP, Mosconi MW et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism, 8, 22 (2017).
- 20.
Kunitomo J, Yoshikawa M, Fushimi M et al. Discovery of 1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyri dazin-4(1H)-one (TAK-063), a highly potent, selective, and orally active phosphodiesterase 10A (PDE10A) inhibitor. J Med Chem, 57(22), 9627-9643 (2014).
- 21.
Suzuki K, Harada A, Shiraishi E, Kimura H. In vivo pharmacological characterization of TAK-063, a potent and selective phosphodiesterase 10A inhibitor with antipsychotic-like activity in rodents. J Pharmacol Exp Ther, 352(3), 471-479 (2015).
- 22.
Macek TA, McCue M, Dong X et al. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr Res, 204, 289-294 (2019).
- 23.
Shiraishi E, Suzuki K, Harada A, Suzuki N, Kimura H. The Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions Associated with Schizophrenia in Rodent Models. J Pharmacol Exp Ther, 356(3), 587-595 (2016).
- 24.
Suzuki K, Harada A, Suzuki H, Miyamoto M, Kimura H. TAK-063, a PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent Antipsychotic-Like Effects in Multiple Paradigms. Neuropsychopharmacology, 41(9), 2252-2262 (2016).
- 25.
Suzuki K, Kimura H. TAK-063, a novel PDE10A inhibitor with balanced activation of direct and indirect pathways, provides a unique opportunity for the treatment of schizophrenia. CNS Neurosci Ther, 24(7), 604-614 (2018).
- 26.
Harada A, Suzuki K, Kimura H. TAK-063, a Novel Phosphodiesterase 10A Inhibitor, Protects from Striatal Neurodegeneration and Ameliorates Behavioral Deficits in the R6/2 Mouse Model of Huntington's Disease. J Pharmacol Exp Ther, 360(1), 75-83 (2017).
- 27.
Berry-Kravis E, Hicar M, Ciurlionis R. Reduced cyclic AMP production in fragile X syndrome: cytogenetic and molecular correlations. Pediatr Res, 38(5), 638-643 (1995).
- 28.
Berry-Kravis E, Huttenlocher PR. Cyclic AMP metabolism in fragile X syndrome. Ann Neurol, 31(1), 22-26 (1992).
- 29.
Maurin T, Melancia F, Jarjat M et al. Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Cereb Cortex, 29(8), 3241-3252 (2019).
- 30.
Choi CH, Schoenfeld BP, Weisz ED et al. PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. J Neurosci, 35(1), 396-408 (2015).
- 31.
Gurney ME, Cogram P, Deacon RM, Rex C, Tranfaglia M. Multiple Behavior Phenotypes of the Fragile-X Syndrome Mouse Model Respond to Chronic Inhibition of Phosphodiesterase-4D (PDE4D). Sci Rep, 7(1), 14653 (2017).
- 32.
Bakker CE, Verheij C et al. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell, 78(1), 23-33 (1994).
- 33.
Artieda J, Valencia M, Alegre M, Olaziregi O, Urrestarazu E, Iriarte J. Potentials evoked by chirp-modulated tones: A new technique to evaluate oscillatory activity in the auditory pathway. Clin Neurophysiol, 115, 699-709 (2004).
- 34.
Pérez-Alcázar M, Nicolás MJJ, Valencia M, Alegre M, Iriarte J, Artieda J. Chirp-evoked potentials in the awake and anesthetized rat. A procedure to assess changes in cortical oscillatory activityExp Neurol, 210, 144-153 (2008).
- 35.
Purcell DW, John SM, Schneider BA, Picton TW. Human temporal auditory acuity as assessed by envelope following responses. J Acoust Soc Am, 116, 3581-3593 (2004).
- 36.
Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci, 16, 4240-4249 (1996).
- 37.
Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods, 164(1), 177-190 (2007).
- 38.
Berry-Kravis E, Sklena P. Demonstration of abnormal cyclic AMP production in platelets from patients with fragile X syndrome. Am J Med Genet, 45(1), 81-87 (1993).
- 39.
Tsai M, Chrones L, Xie J, Gevorkyan H, Macek TA. A phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-063, a selective PDE10A inhibitor. Psychopharmacology, 233(21-22), 3787-3795 (2016).
- 40.
Sinclair D, Featherstone R, Naschek M et al. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome. Eneuro, 4, ENEURO.0380-0316.2017 (2017).
- 41.
Ethridge LE, De Stefano LA, Schmitt LM et al. Auditory EEG Biomarkers in Fragile X Syndrome: Clinical Relevance. Front Integr Neurosci, 13, 60 (2019).
Acknowledgments
We acknowledge members of the Binder laboratory and Drs. Daniel Curran and Tauhid Ali from Takeda International for fruitful discussions. This work was supported by the Takeda International–UK, Rare Diseases Therapeutic Area Unit.
Required Author Forms
Disclosure forms provided by the authors are available with the online version of this article.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised to add a note stating Manbir S. Sandhu and Samantha A. Assad are co-second authors.
Supplementary Information
ESM 1
(PDF 1224 kb)
Rights and permissions
About this article
Cite this article
Jonak, C.R., Sandhu, M.S., Assad, S.A. et al. The PDE10A Inhibitor TAK-063 Reverses Sound-Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Neurotherapeutics (2021). https://doi.org/10.1007/s13311-021-01005-w
Accepted:
Published:
Key Words
- Fragile X syndrome
- electroencephalography
- biomarker
- TAK-063
- phosphodiesterase