Ryskalin, L., et al., mTOR-Dependent Cell Proliferation in the Brain. Biomed Res Int, 2017. 2017: p. 7082696.
PubMed
PubMed Central
Article
CAS
Google Scholar
Crino, P.B., mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med, 2015. 5(4):a022442. https://doi.org/10.1101/cshperspect.a022442.
Saxton, R.A. and D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017. 169(2): p. 361-371.
CAS
PubMed
Article
Google Scholar
Dentel, B., C.O. Escamilla, and P.T. Tsai, Therapeutic Targeting of mTORC2 in mTORopathies. Neuron, 2019. 104(6): p. 1032-1033.
CAS
PubMed
Article
Google Scholar
Richardson, E.P., Jr., Pathology of tuberous sclerosis. Neuropathologic aspects. Ann N Y Acad Sci, 1991. 615: p. 128-139.
PubMed
Article
Google Scholar
Vinters, H.V., et al., Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes. Dev Neurosci, 1999. 21(3-5): p. 248-259.
CAS
PubMed
Article
Google Scholar
Eker, R., Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand, 1954. 34(6): p. 554-562.
CAS
PubMed
Article
Google Scholar
Eker, R., et al., Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol, 1981. 4(1): p. 99-110.
CAS
PubMed
Google Scholar
Yeung, R.S., C.D. Katsetos, and A. Klein-Szanto, Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol, 1997. 151(5): p. 1477-1486.
CAS
PubMed
PubMed Central
Google Scholar
Kutna, V., et al., Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics, 2020. 17(1): p. 329-339.
CAS
PubMed
Article
Google Scholar
Waltereit, R., et al., Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J Neurochem, 2006. 96(2): p. 407-413.
CAS
PubMed
Article
Google Scholar
Rennebeck, G., et al., Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15629-15634.
CAS
PubMed
PubMed Central
Article
Google Scholar
Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-823.
PubMed
PubMed Central
Article
Google Scholar
Tomlinson, I.P., R. Roylance, and R.S. Houlston, Two hits revisited again. J Med Genet, 2001. 38(2): p. 81-85.
CAS
PubMed
PubMed Central
Article
Google Scholar
Afshar Saber, W. and M. Sahin, Recent advances in human stem cell-based modeling of Tuberous Sclerosis Complex. Mol Autism, 2020. 11(1): p. 16.
PubMed
PubMed Central
Article
Google Scholar
Blair, J.D. and H.S. Bateup, New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn, 2020. 249(1): p. 46-55.
PubMed
Article
Google Scholar
Robertson, F.L., et al., Experimental models and tools to tackle glioblastoma. Dis Model Mech, 2019. 12(9):dmm040386. https://doi.org/10.1242/dmm.040386.
Parsa, A.T., et al., Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery, 2000. 47(4): p. 993-999; discussion 999-1000.
CAS
PubMed
Article
Google Scholar
Workman, P., et al., Guidelines for the welfare and use of animals in cancer research. Br J Cancer, 2010. 102(11): p. 1555-1577.
CAS
PubMed
PubMed Central
Article
Google Scholar
Simons, B.W. and C. Brayton, Challenges and Limitations of Mouse Xenograft Models of Cancer. Patient Derived Tumor Xenograft Models, ed. R. Uthamanthil and P. Tinkey. 2016, Johns Hopkins University School of Medicine, Baltimore, MD, United States: Academic Press.
Kim, K.M., et al., Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell Int, 2016. 16: p. 43.
PubMed
PubMed Central
Article
Google Scholar
Fryer, A.E., et al., Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet, 1987. 1(8534): p. 659-661.
CAS
PubMed
Article
Google Scholar
van Slegtenhorst, M., et al., Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 1997. 277(5327): p. 805-808.
PubMed
Article
Google Scholar
Kandt, R.S., et al., Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet, 1992. 2(1): p. 37-41.
CAS
PubMed
Article
Google Scholar
Henske, E.P., et al., Tuberous sclerosis complex. Nat Rev Dis Primers, 2016. 2: p. 16035.
PubMed
Article
Google Scholar
Lam, H.C., B.J. Siroky, and E.P. Henske, Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol, 2018. 14(11): p. 704-716.
PubMed
Article
Google Scholar
Bongaarts, A., et al., Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget, 2017. 8(56): p. 95516-95529.
PubMed
PubMed Central
Article
Google Scholar
Huang, J. and B.D. Manning, The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J, 2008. 412(2): p. 179-190.
CAS
PubMed
Article
Google Scholar
Rosset, C., C.B.O. Netto, and P. Ashton-Prolla, TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol, 2017. 40(1): p. 69-79.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lamb, R.F., et al., The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol, 2000. 2(5): p. 281-287.
CAS
PubMed
Article
Google Scholar
Haddad, L.A., et al., The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem, 2002. 277(46): p. 44180-44186.
CAS
PubMed
Article
Google Scholar
Schopel, M., et al., The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function. Biol Chem, 2017. 398(5-6): p. 577-588.
PubMed
Article
CAS
Google Scholar
Fehon, R.G., A.I. McClatchey, and A. Bretscher, Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol, 2010. 11(4): p. 276-287.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kleijer, K.T., et al., Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 2014. 231(6): p. 1037-1062.
CAS
PubMed
Article
Google Scholar
Kobayashi, T., et al., Identification of a leader exon and a core promoter for the rat tuberous sclerosis 2 (Tsc2) gene and structural comparison with the human homolog. Mamm Genome, 1997. 8(8): p. 554-558.
CAS
PubMed
Article
Google Scholar
Maheshwar, M.M., et al., The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet, 1997. 6(11): p. 1991-1996.
CAS
PubMed
Article
Google Scholar
Nussinov, R., et al., The Mystery of Rap1 Suppression of Oncogenic Ras. Trends Cancer, 2020. 6(5): p. 369-379.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jaskiewicz, A., B. Pajak, and A. Orzechowski, The Many Faces of Rap1 GTPase. Int J Mol Sci, 2018. 19(10):2848. https://doi.org/10.3390/ijms19102848.
Rubinfeld, B., et al., Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell, 1991. 65(6): p. 1033-1042.
CAS
PubMed
Article
Google Scholar
Yeung, R.S., Lessons from the Eker rat model: from cage to bedside. Curr Mol Med, 2004. 4(8): p. 799-806.
CAS
PubMed
Article
Google Scholar
Soucek, T., et al., Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem, 1997. 272(46): p. 29301-29308.
CAS
PubMed
Article
Google Scholar
Jin, M., Q. An, and L. Wang, Importance of tuberin in carcinogenesis. Oncol Lett, 2017. 14(3): p. 2598-2602.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rosner, M. and M. Hengstschlager, Cytoplasmic/nuclear localization of tuberin in different cell lines. Amino Acids, 2007. 33(4): p. 575-579.
CAS
PubMed
Article
Google Scholar
Wienecke, R., et al., Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene, 1996. 13(5): p. 913-923.
CAS
PubMed
Google Scholar
Demetriades, C., N. Doumpas, and A.A. Teleman, Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell, 2014. 156(4): p. 786-799.
CAS
PubMed
PubMed Central
Article
Google Scholar
Demetriades, C., M. Plescher, and A.A. Teleman, Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun, 2016. 7: p. 10662.
CAS
PubMed
PubMed Central
Article
Google Scholar
Johnson, M.W., et al., Hamartin and tuberin expression in human tissues. Mod Pathol, 2001. 14(3): p. 202-210.
CAS
PubMed
Article
Google Scholar
Li, Y., et al., Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex. Sci Rep, 2018. 8(1): p. 13373.
PubMed
PubMed Central
Article
CAS
Google Scholar
Dan, H.C., et al., Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem, 2016. 291(43): p. 22848.
CAS
PubMed
PubMed Central
Article
Google Scholar
Inoki, K., et al., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 2002. 4(9): p. 648-657.
CAS
PubMed
Article
Google Scholar
Potter, C.J., L.G. Pedraza, and T. Xu, Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol, 2002. 4(9): p. 658-665.
CAS
PubMed
Article
Google Scholar
Tee, A.R., et al., Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13571-13576.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ma, L., et al., Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res, 2007. 67(15): p. 7106-7112.
CAS
PubMed
Article
Google Scholar
Nie, D., et al., Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci, 2010. 13(2): p. 163-172.
CAS
PubMed
PubMed Central
Article
Google Scholar
Han, S., et al., Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal, 2008. 20(6): p. 1084-1091.
CAS
PubMed
PubMed Central
Article
Google Scholar
Inoki, K., T. Zhu, and K.L. Guan, TSC2 mediates cellular energy response to control cell growth and survival. Cell, 2003. 115(5): p. 577-590.
CAS
PubMed
Article
Google Scholar
Hahn-Windgassen, A., et al., Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem, 2005. 280(37): p. 32081-32089.
CAS
PubMed
Article
Google Scholar
Lee, D.F., et al., IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell, 2007. 130(3): p. 440-455.
CAS
PubMed
Article
Google Scholar
Kwiatkowski, D.J., Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther, 2003. 2(5): p. 471-476.
CAS
PubMed
Article
Google Scholar
Meikle, L., et al., A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci, 2007. 27(21): p. 5546-5558.
CAS
PubMed
PubMed Central
Article
Google Scholar
Goncharova, E.A., et al., Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem, 2002. 277(34): p. 30958-30967.
CAS
PubMed
Article
Google Scholar
Cheadle, J.P., et al., Molecular genetic advances in tuberous sclerosis. Hum Genet, 2000. 107(2): p. 97-114.
CAS
PubMed
Article
Google Scholar
Napolioni, V. and P. Curatolo, Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics, 2008. 9(7): p. 475-487.
CAS
PubMed
PubMed Central
Article
Google Scholar
Osborne, J.P., A. Fryer, and D. Webb, Epidemiology of tuberous sclerosis. Ann N Y Acad Sci, 1991. 615: p. 125-127.
CAS
PubMed
Article
Google Scholar
Samueli, S., et al., Tuberous Sclerosis Complex: new criteria for diagnostic work-up and management. Wien Klin Wochenschr, 2015. 127(15-16): p. 619-630.
PubMed
Article
Google Scholar
Prather, P. and P.J. de Vries, Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 666-674.
PubMed
Article
Google Scholar
de Vries, P.J., et al., A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Am J Med Genet C: Semin Med Genet, 2018. 178(3): p. 309-320.
Article
Google Scholar
Gipson, T.T., et al., Potential for treatment of severe autism in tuberous sclerosis complex. World J Clin Pediatr, 2013. 2(3): p. 16-25.
PubMed
PubMed Central
Article
Google Scholar
Hunt, A. and J. Dennis, Psychiatric disorder among children with tuberous sclerosis. . Dev Med Child Neurol , 1987. 29: p. 190–198.
CAS
PubMed
Article
Google Scholar
Holmes, G.L., C.E. Stafstrom, and G. Tuberous Sclerosis Study, Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia, 2007. 48(4): p. 617-630.
PubMed
Article
Google Scholar
Nabbout, R., et al., Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open, 2019. 4(1): p. 73-84.
PubMed
Article
Google Scholar
Braffman, B.H., et al., MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology, 1992. 183(1): p. 227-238.
CAS
PubMed
Article
Google Scholar
Ridler, K., et al., Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 658-665.
PubMed
Article
Google Scholar
Peters, J.M., et al., Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol, 2013. 8(5): p. 583-597.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamanouchi, H., et al., Giant cells in cortical tubers in tuberous sclerosis showing synaptophysin-immunoreactive halos. Brain and Development, 1997. 19(1): p. 21-24.
CAS
PubMed
Article
Google Scholar
Mizuguchi, M. and S. Takashima, Neuropathology of tuberous sclerosis. Brain and Development, 2001. 23(7): p. 508-515.
CAS
PubMed
Article
Google Scholar
Grajkowska, W., et al., Brain lesions in tuberous sclerosis complex. ReviewFolia Neuropathol, 2010. 48(3): p. 139-149.
PubMed
Google Scholar
Fohlen, M., et al., Refractory epilepsy in preschool children with tuberous sclerosis complex: Early surgical treatment and outcome. Seizure, 2018. 60: p. 71-79.
PubMed
Article
Google Scholar
Kalantari, B.N. and N. Salamon, Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR Am J Roentgenol, 2008. 190(5): p. W304-W309.
PubMed
Article
Google Scholar
Yamanouchi, H., et al., Evidence of abnormal differentiation in giant cells of tuberous sclerosis. Pediatr Neurol, 1997. 17(1): p. 49-53.
CAS
PubMed
Article
Google Scholar
Henske, E.P., et al., Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol, 1997. 151(6): p. 1639-1647.
CAS
PubMed
PubMed Central
Google Scholar
DiMario, F.J., Jr., Brain abnormalities in tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 650-657.
PubMed
Article
Google Scholar
Goh, S., W. Butler, and E.A. Thiele, Subependymal giant cell tumors in tuberous sclerosis complex. Neurology, 2004. 63(8): p. 1457-1461.
PubMed
Article
Google Scholar
Adriaensen, M.E., et al., Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol, 2009. 16(6): p. 691-696.
CAS
PubMed
Article
Google Scholar
Cuccia, V., et al., Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst, 2003. 19(4): p. 232-243.
PubMed
Article
Google Scholar
Buccoliero, A.M., et al., Subependymal giant cell astrocytoma (SEGA): Is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology, 2009. 29(1): p. 25-30.
PubMed
Article
Google Scholar
Hirose, T., et al., Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol, 1995. 90(4): p. 387-399.
CAS
PubMed
Article
Google Scholar
Di Rocco, C., A. Iannelli, and E. Marchese, On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg, 1995. 23(3): p. 115-121.
PubMed
Article
Google Scholar
Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. N Engl J Med, 2006. 355(13): p. 1345-1356.
CAS
PubMed
Article
Google Scholar
Kim, J.Y., et al., Subependymal Giant Cell Astrocytoma Presenting with Tumoral Bleeding: A Case Report. Brain Tumor Res Treat, 2017. 5(1): p. 37-41.
PubMed
PubMed Central
Article
Google Scholar
Ess, K.C., et al., Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology, 2005. 64(8): p. 1446-1449.
PubMed
Article
Google Scholar
Ess, K.C., et al., Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia, 2004. 46(1): p. 28-40.
PubMed
Article
Google Scholar
Feng, L., M.E. Hatten, and N. Heintz, Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron, 1994. 12(4): p. 895-908.
CAS
PubMed
Article
Google Scholar
Jozwiak, S., et al., Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis. J Child Neurol, 2004. 19(2): p. 102-106.
PubMed
Article
Google Scholar
Mizuguchi, M., et al., Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma. J Neuropathol Exp Neurol, 2000. 59(3): p. 188-196.
CAS
PubMed
Article
Google Scholar
Takahashi, D.K., et al., Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia, 2004. 45(12): p. 1525-1530.
PubMed
Article
Google Scholar
Wenzel, H.J., et al., Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol, 2004. 108(2): p. 97-108.
PubMed
Article
Google Scholar
Wippold, F.J., 2nd, A. Perry, and J. Lennerz, Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol, 2006. 27(5): p. 958-961.
PubMed
PubMed Central
Google Scholar
Curatolo, P., et al., Neuropsychiatric aspects of tuberous sclerosis. Ann N Y Acad Sci, 1991. 615: p. 8-16.
CAS
PubMed
Article
Google Scholar
Almobarak, S., et al., Tuberous Sclerosis Complex: Clinical Spectrum and Epilepsy: A Retrospective Chart Review Study. Transl Neurosci, 2018. 9: p. 154-160.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tschuluun, N., H.J. Wenzel, and P.A. Schwartzkroin, Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res, 2007. 73(1): p. 53-64.
PubMed
Article
Google Scholar
Cooper, A.J., The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res, 2012. 37(11): p. 2439-2355.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ito, D., et al., Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke, 2001. 32(5): p. 1208-1215.
CAS
PubMed
Article
Google Scholar
Kirschstein, T., Synaptic plasticity and learning in animal models of tuberous sclerosis complex. Neural Plast, 2012. 2012: p. 279834.
PubMed
PubMed Central
Article
CAS
Google Scholar
Lee, B.H., T. Smith, and A.R. Paciorkowski, Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav, 2015. 47: p. 191-201.
PubMed
PubMed Central
Article
Google Scholar
Switon, K., et al., Tuberous sclerosis complex: From molecular biology to novel therapeutic approaches. IUBMB Life, 2016. 68(12): p. 955-962.
CAS
PubMed
Article
Google Scholar
Switon, K., et al., Molecular neurobiology of mTOR. Neuroscience, 2017. 341: p. 112-153.
CAS
PubMed
Article
Google Scholar
Goorden, S.M., et al., Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann Neurol, 2007. 62(6): p. 648-655.
PubMed
Article
Google Scholar
Ovsepian, S.V., et al., Ambient Glutamate Promotes Paroxysmal Hyperactivity in Cortical Pyramidal Neurons at Amyloid Plaques via Presynaptic mGluR1 Receptors. Cereb Cortex, 2017. 27(10): p. 4733-4749.
PubMed
Google Scholar
Ovsepian, S.V. and V.B. O'Leary, Neuronal activity and amyloid plaque pathology: an update. J Alzheimers Dis, 2016. 49(1): p. 13-19.
PubMed
Article
CAS
Google Scholar
Ovsepian, S.V., et al., Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist, 2019. 25(4): p. 288-297.
CAS
PubMed
Article
Google Scholar
von der Brelie, C., et al., Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci, 2006. 23(3): p. 686-692.
PubMed
Article
Google Scholar
Chu-Shore, C., et al., The natural history of epilepsy in tuberous sclerosis complex. , ed. Epilepsia. 2010, John Wiley & Sons, Ltd; 2010;51(7):1236–1241.
Vignoli, A., et al., Epilepsy in TSC: Certain etiology does not mean certain prognosis. Epilepsia. . 2013: John Wiley & Sons, Ltd.
Kobayashi, T., et al., A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8762-8767.
CAS
PubMed
PubMed Central
Article
Google Scholar
Uhlmann, E.J., et al., Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol, 2002. 52(3): p. 285-296.
CAS
PubMed
Article
Google Scholar
Zeng, L.H., et al., Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet, 2011. 20(3): p. 445-454.
CAS
PubMed
Article
Google Scholar
Onda, H., et al., Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest, 1999. 104(6): p. 687-695.
CAS
PubMed
PubMed Central
Article
Google Scholar
Way, S.W., et al., Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet, 2009. 18(7): p. 1252-1265.
CAS
PubMed
PubMed Central
Article
Google Scholar
Crowell, B., et al., Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123). eNeuro, 2015. 2(6):ENEURO.0046-15.2015. https://doi.org/10.1523/ENEURO.0046-15.2015.
Steele, R.J. and R.G. Morris, Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus, 1999. 9(2): p. 118-136.
CAS
PubMed
Article
Google Scholar
Waltereit, R., et al., Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet, 2011. 41(3): p. 364-372.
PubMed
Article
Google Scholar