Skip to main content

Surgical Treatment of Parkinson’s Disease: Devices and Lesion Approaches

Abstract

Surgical treatments have transformed the management of Parkinson’s disease (PD). Therapeutic options available for the management of PD motor complications include deep brain stimulation (DBS), ablative or lesioning procedures (pallidotomy, thalamotomy, subthalamotomy), and dopaminergic medication infusion devices. The decision to pursue these advanced treatment options is typically done by a multidisciplinary team by considering factors such as the patient’s clinical characteristics, efficacy, ease of use, and risks of therapy with a goal to improve PD symptoms and quality of life. DBS has become the most widely used surgical therapy, although there is a re-emergence of interest in ablative procedures with the introduction of MR-guided focused ultrasound. In this article, we review DBS and lesioning procedures for PD, including indications, selection process, and management strategies.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science 1947;106(2754):349-350.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Spiegel EA, Wycis HT. Stereoencephalotomy: Methods and stereotaxic atlas of the human brain: Grune & Stratton; 1952.

  3. 3.

    Hassler R. Indikationen und Lokalizationsmethode der gezielten Hirnoperationen. Nervenarzt 1954;25:441-447.

    CAS  PubMed  Google Scholar 

  4. 4.

    Cooper IS. Ligation of the anterior choroidal artery for involuntary movements-parkinsonism. Psychiatr Q 1953;27(1-4):317-319.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Narabayashi H, Okuma T. Procaine-oil blocking of the globus pallidus for the treatment of rigidity and tremor of parkinsonism (preliminary report). Proc Jpn Acad 1953;29(3):134-137.

    Article  Google Scholar 

  6. 6.

    Gildenberg PL. Evolution of neuromodulation. Stereotact Funct Neurosurg 2005;83(2-3):71-79.

    PubMed  Article  Google Scholar 

  7. 7.

    Albe Fessard D, Arfel G, Guiot G, Derome P, Dela H, Korn H, et al. [CHARACTERISTIC ELECTRIC ACTIVITIES OF SOME CEREBRAL STRUCTURES IN MAN]. Ann Chir. 1963;17:1185-214.

  8. 8.

    Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276(7):374-379.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Narabayashi H, Yokochi F, Nakajima Y. Levodopa-induced dyskinesia and thalamotomy. J Neurol Neurosurg Psychiatry 1984;47(8):831-839.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Laitinen LV, Bergenheim AT, Hariz MI. Leksell's posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992;76(1):53-61.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    DeLong MR, Crutcher MD, Georgopoulos AP. Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 1985;53(2):530-543.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12(10):366-375.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987;50(1-6):344-346.

    CAS  PubMed  Google Scholar 

  14. 14.

    Benabid AL, Pollak P, Gao D, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 1996;84(2):203-214.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Koller W, Pahwa R, Busenbark K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997;42(3):292-299.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Laitinen LV, Bergenheim AT, Hariz MI. Leksell's posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992;76(1):53-61.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990;249(4975):1436-1438.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery 1994;35(6):1126-1129; discussion 9-30.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Limousin P, Pollak P, Benazzouz A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995;345(8942):91-95.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol 2005;62(8):1250-5.

    PubMed  Article  Google Scholar 

  21. 21.

    Lang AE, Widner H. Deep brain stimulation for Parkinson's disease: patient selection and evaluation. Mov Disord 2002;17(S3):S94-S101.

    PubMed  Article  Google Scholar 

  22. 22.

    Welter M, Houeto J, Tezenas du Montcel S et al. Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain 2002;125(3):575-583.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Charles PD, Van Blercom N, Krack P, et al. Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology 2002;59(6):932-934.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Derost PP, Ouchchane L, Morand D, et al. Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology 2007;68(17):1345-1355.

    PubMed  Article  Google Scholar 

  25. 25.

    Russmann H, Ghika J, Villemure JG, et al. Subthalamic nucleus deep brain stimulation in Parkinson disease patients over age 70 years. Neurology 2004;63(10):1952-1954.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009;301(1):63-73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Mathkour M, Garces J, Scullen T, et al. Short- and long-term outcomes of deep brain stimulation in patients 70 years and older with Parkinson disease. World Neurosurg 2017;97:247-252.

    PubMed  Article  Google Scholar 

  28. 28.

    Sharma VD, Lyons KE, Nazzaro JM, Pahwa R. Deep brain stimulation of the subthalamic nucleus in Parkinson's disease patients over 75years of age. J Neurol Sci 2019;399:57-60.

    PubMed  Article  Google Scholar 

  29. 29.

    Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368(7):610-622.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005;62(4):554-60.

    PubMed  Article  Google Scholar 

  31. 31.

    Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial Ann Neurol 2009;65(5):586-595.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Weaver FM, Follett KA, Stern M, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 2012;79(1):55-65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Odekerken VJ, Boel JA, Schmand BA, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology 2016;86(8):755-761.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Mansouri A, Taslimi S, Badhiwala JH, et al. Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg 2018;128(4):1199-1213.

    PubMed  Article  Google Scholar 

  35. 35.

    Wong JK, Cauraugh JH, Ho KWD, et al. STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: a systematic review and meta-analysis. Parkinsonism Relat Disord 2019;58:56-62.

    PubMed  Article  Google Scholar 

  36. 36.

    Follett KA. Comparison of pallidal and subthalamic deep brain stimulation for the treatment of levodopa-induced dyskinesias. Neurosurg Focus 2004;17(1):E3.

    PubMed  Article  Google Scholar 

  37. 37.

    Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010;362(22):2077-2091.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Mei S, Eisinger RS, Hu W, Tsuboi T, Foote KD, Hass CJ, et al. Three-Year Gait and Axial Outcomes of Bilateral STN and GPi Parkinson's Disease Deep Brain Stimulation. Front Hum Neurosci. 2020;14:1.

  39. 39.

    George RS, Nutt J, Burchiel K, Horak F. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology 2010;75(14):1292-1299.

    Article  Google Scholar 

  40. 40.

    Boel JA, Odekerken VJ, Schmand BA, et al. Cognitive and psychiatric outcome 3 years after globus pallidus pars interna or subthalamic nucleus deep brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord 2016;33:90-95.

    PubMed  Article  Google Scholar 

  41. 41.

    Wang JW, Zhang YQ, Zhang XH, et al. Psychiatric effects of STN versus GPi deep brain stimulation in Parkinson's disease: a meta-analysis of randomized controlled trials. PLoS One 2016;11(6):e0156721.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Lyons K, Koller W, Wilkinson S, Pahwa R. Long term safety and efficacy of unilateral deep brain stimulation of the thalamus for parkinsonian tremor. J Neurol Neurosurg Psychiatry 2001;71(5):682-684.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Cury RG, Fraix V, Castrioto A, et al. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 2017;89(13):1416-1423.

    PubMed  Article  Google Scholar 

  44. 44.

    Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 2005;16(17):1883-1887.

    PubMed  Article  Google Scholar 

  45. 45.

    Ferraye M, Debû B, Fraix V, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 2010;133(1):205-214.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Mestre TA, Sidiropoulos C, Hamani C, et al. Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov Disord 2016;31(10):1570-4.

    PubMed  Article  Google Scholar 

  47. 47.

    Welter M-L, Demain A, Ewenczyk C, et al. PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol 2015;262(6):1515-1525.

    PubMed  Article  Google Scholar 

  48. 48.

    Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 2006;129(Pt 7):1732-1747.

    PubMed  Article  Google Scholar 

  49. 49.

    Kitagawa M, Murata J-i, Uesugi H, et al. Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson’s disease. Neurosurgery 2005;56(2):281-289.

    PubMed  Article  Google Scholar 

  50. 50.

    Blomstedt P, Persson RS, Hariz G-M, et al. Deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with Parkinson’s disease: a randomised blinded evaluation. J Neurol Neurosurg Psychiatry 2018;89(7):710-716.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Peppe A, Gasbarra A, Stefani A, et al. Deep brain stimulation of CM/PF of thalamus could be the new elective target for tremor in advanced Parkinson’s disease? Parkinsonism Relat Disord 2008;14(6):501-504.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Sharma VD, Mewes K, Wichmann T, Buetefisch C, Willie JT, DeLong M. Deep brain stimulation of the centromedian thalamic nucleus for essential tremor: a case report. Acta Neurochir 2017;159(5):789-793.

    PubMed  Article  Google Scholar 

  53. 53.

    Alberts JL, Hass CJ, Vitek JL, Okun MS. Are two leads always better than one: an emerging case for unilateral subthalamic deep brain stimulation in Parkinson's disease. Exp Neurol 2008;214(1):1-5.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Petraglia FW, 3rd, Farber SH, Han JL, et al. Comparison of bilateral vs. staged unilateral deep brain stimulation (DBS) in Parkinson’s disease in patients under 70 years of age. Neuromodulation 2016;19(1):31-37.

    PubMed  Article  Google Scholar 

  55. 55.

    Walker HC, Watts RL, Guthrie S, Wang D, Guthrie BL. Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson’s disease at 1 year. Neurosurgery 2009;65(2):302-310.

    PubMed  Article  Google Scholar 

  56. 56.

    Slowinski JL, Putzke JD, Uitti RJ, et al. Unilateral deep brain stimulation of the subthalamic nucleus for Parkinson disease. J Neurosurg 2007;106(4):626-632.

    PubMed  Article  Google Scholar 

  57. 57.

    Taba HA, Wu SS, Foote KD, et al. A closer look at unilateral versus bilateral deep brain stimulation: results of the National Institutes of Health COMPARE cohort. J Neurosurg 2010;113(6):1224-1229.

    PubMed  Article  Google Scholar 

  58. 58.

    Zahodne LB, Okun MS, Foote KD, et al. Greater improvement in quality of life following unilateral deep brain stimulation surgery in the globus pallidus as compared to the subthalamic nucleus. J Neurol 2009;256(8):1321-1329.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Steigerwald F, Matthies C, Volkmann J. Directional deep brain stimulation. Neurotherapeutics 2019;16(1):100-104.

    PubMed  Article  Google Scholar 

  60. 60.

    Timmermann L, Jain R, Chen L, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson's disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol 2015;14(7):693-701.

    PubMed  Article  Google Scholar 

  61. 61.

    Dembek TA, Reker P, Visser-Vandewalle V, et al. Directional DBS increases side-effect thresholds-a prospective, double-blind trial. Mov Disord 2017;32(10):1380-1388.

    PubMed  Article  Google Scholar 

  62. 62.

    Rebelo P, Green AL, Aziz TZ, et al. Thalamic directional deep brain stimulation for tremor: spend less, get more. Brain Stimul 2018;11(3):600-606.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Barbe MT, Maarouf M, Alesch F, Timmermann L. Multiple source current steering–a novel deep brain stimulation concept for customized programming in a Parkinson's disease patient. Parkinsonism Relat Disord 2014;20(4):471-473.

    PubMed  Article  Google Scholar 

  64. 64.

    Ten Brinke TR, Odekerken VJJ, Dijk JM, van den Munckhof P, Schuurman PR, de Bie RMA. Directional deep brain stimulation: first experiences in centers across the globe. Brain Stimul 2018;11(4):949-950.

    PubMed  Article  Google Scholar 

  65. 65.

    Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid AL. Deep brain stimulation for Parkinson's disease: surgical technique and perioperative management. Mov Disord 2006;21 Suppl 14:S247-S258.

    PubMed  Article  Google Scholar 

  66. 66.

    Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor. Mov Disord 2006;21 Suppl 14:S259-S283.

    PubMed  Article  Google Scholar 

  67. 67.

    Holloway K, Docef A. A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery 2013;72(1 Suppl Operative):47-57.

    PubMed  Google Scholar 

  68. 68.

    Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg 2013;119(2):301-306.

    PubMed  Article  Google Scholar 

  69. 69.

    Ostrem JL, Ziman N, Galifianakis NB, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg 2016;124(4):908-916.

    PubMed  Article  Google Scholar 

  70. 70.

    Aziz TZ, Hariz M. To sleep or not to sleep during deep brain stimulation surgery for Parkinson disease? Neurology 2017;89(19):1938-1939.

    PubMed  Article  Google Scholar 

  71. 71.

    Lozano CS, Ranjan M, Boutet A, Xu DS, Kucharczyk W, Fasano A, Lozano AM. Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease. J Neurosurg. 2018 Jul 1:1-6. https://doi.org/10.3171/2018.2.JNS172186 Epub ahead of print. PMID: 30074454.

  72. 72.

    Geraedts VJ, van Ham RAP, Marinus J, et al. Intraoperative test stimulation of the subthalamic nucleus aids postoperative programming of chronic stimulation settings in Parkinson’s disease. Parkinsonism Relat Disord 2019;65:62-66.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg 2012;116(1):84-94.

    PubMed  Article  Google Scholar 

  74. 74.

    Brodsky MA, Anderson S, Murchison C, et al. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology 2017;89(19):1944-1950.

    PubMed  Article  Google Scholar 

  75. 75.

    Bezchlibnyk YB, Sharma VD, Naik KB, Isbaine F, Gale JT, Cheng J, Triche SD, Miocinovic S, Buetefisch CM, Willie JT, Boulis NM, Factor SA, Wichmann T, DeLong MR, Gross RE. Clinical outcomes of globus pallidus deep brain stimulation for Parkinson disease: a comparison of intraoperative MRI- and MER-guided lead placement. J Neurosurg. 2020 Mar 6:1-11. https://doi.org/10.3171/2019.12.JNS192010. Epub ahead of print. PMID: 32114534.

  76. 76.

    Ho AL, Ali R, Connolly ID, et al. Awake versus asleep deep brain stimulation for Parkinson's disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry 2018;89(7):687-691.

    PubMed  Article  Google Scholar 

  77. 77.

    Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K. Deep Brain Stimulation Programming 2.0: future perspectives for target identification and adaptive closed loop stimulation. Front Neurol 2019;10:314.

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006;355(9):896-908.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Schüpbach W, Maltete D, Houeto J, et al. Neurosurgery at an earlier stage of Parkinson disease: a randomized, controlled trial. Neurology 2007;68(4):267-271.

    PubMed  Article  Google Scholar 

  80. 80.

    Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 2008;7(7):605-614.

    PubMed  Article  Google Scholar 

  81. 81.

    Okun MS, Gallo BV, Mandybur G, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol 2012;11(2):140-149.

    PubMed  Article  Google Scholar 

  82. 82.

    Williams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 2010;9(6):581-591.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Hitti FL, Ramayya AG, McShane BJ, Yang AI, Vaughan KA, Baltuch GH. Long-term outcomes following deep brain stimulation for Parkinson's disease. J Neurosurg. 2019 Jan 18:1-6. https://doi.org/10.3171/2018.8.JNS182081. Epub ahead of print. PMID: 30660117.

  84. 84.

    Castrioto A, Lozano AM, Poon YY, Lang AE, Fallis M, Moro E. Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol 2011;68(12):1550-1556.

    PubMed  Article  Google Scholar 

  85. 85.

    Seijo FJ, Alvarez-Vega MA, Gutierrez JC, Fdez-Glez F, Lozano B. Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson's disease. Review of 272 procedures. Acta Neurochir. 2007;149(9):867-875; discussion 76.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Videnovic A, Metman LV. Deep brain stimulation for Parkinson’s disease: prevalence of adverse events and need for standardized reporting. Mov Disord 2008;23(3):343-349.

    PubMed  Article  Google Scholar 

  87. 87.

    Fenoy AJ, Simpson RK, Jr. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg 2014;120(1):132-139.

    PubMed  Article  Google Scholar 

  88. 88.

    Goodman RR, Kim B, McClelland S, 3rd, et al. Operative techniques and morbidity with subthalamic nucleus deep brain stimulation in 100 consecutive patients with advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 2006;77(1):12-17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Sharma VD, Lyons KE, Nazzaro JM, Pahwa R. Does post-operative symptomatic lead edema associated with subthalamic DBS implantation impact long-term clinical outcomes? J Neurol Sci 2020;410:116647.

    PubMed  Article  Google Scholar 

  90. 90.

    Paim Strapasson AC, Martins Antunes AC, Petry Oppitz P, Dalsin M, de Mello Rieder CR. Postoperative confusion in patients with Parkinson disease undergoing deep brain stimulation of the subthalamic nucleus. World Neurosurg 2019;125:e966-e971.

    PubMed  Article  Google Scholar 

  91. 91.

    Sharma VD, Bona AR, Mantovani A, et al. Cystic lesions as a rare complication of deep brain stimulation. Mov Disord Clin Pract 2016;3(1):87-90.

    PubMed  Article  Google Scholar 

  92. 92.

    Waldvogel D, Baumann-Vogel H, Stieglitz L, Hanggi-Schickli R, Baumann CR. Beware of deep water after subthalamic deep brain stimulation. Neurology 2020;94(1):39-41.

    PubMed  Article  Google Scholar 

  93. 93.

    Rolston JD, Englot DJ, Starr PA, Larson PS. An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: analysis of multiple databases. Parkinsonism Relat Disord 2016;33:72-77.

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Voon V, Krack P, Lang AE, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain 2008;131(Pt 10):2720-2728.

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Weintraub D, Duda JE, Carlson K, et al. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry 2013;84(10):1113-1118.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 2013;70(2):163-171.

    PubMed  Article  Google Scholar 

  97. 97.

    Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 2000;84(1):570-574.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Welter ML, Houeto JL, Bonnet AM, et al. Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 2004;61(1):89-96.

    PubMed  Article  Google Scholar 

  99. 99.

    Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003;23(5):1916-1923.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 2004;91(4):1457-1469.

    PubMed  Article  Google Scholar 

  101. 101.

    Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 2004;15(7):1137-1140.

    PubMed  Article  Google Scholar 

  102. 102.

    Kuhn AA, Kempf F, Brucke C, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 2008;28(24):6165-6173.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    de Hemptinne C, Swann NC, Ostrem JL, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci 2015;18(5):779-786.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. 104.

    Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2016;115(1):19-38.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013;74(3):449-457.

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Swann NC, de Hemptinne C, Thompson MC, et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng 2018;15(4):046006.

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Malekmohammadi M, Herron J, Velisar A, et al. Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov Disord 2016;31(3):426-428.

    PubMed  Article  Google Scholar 

  108. 108.

    Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA, Blokland A, et al. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 2006;1120(1):100-105.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Piallat B, Benazzouz A, Benabid AL. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 1996;8(7):1408-1414.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Hacker ML, DeLong MR, Turchan M, et al. Effects of deep brain stimulation on rest tremor progression in early stage Parkinson disease. Neurology 2018;91(5):e463-e471.

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Walters H, Shah BB. Focused Ultrasound and other lesioning therapies in movement disorders. Curr Neurol Neurosci Rep 2019;19(9):66.

    PubMed  Article  Google Scholar 

  112. 112.

    Jourdain VA, Schechtmann G. Health economics and surgical treatment for Parkinson’s disease in a world perspective: results from an international survey. Stereotact Funct Neurosurg 2014;92(2):71-79.

    PubMed  Article  Google Scholar 

  113. 113.

    Hariz MI, Hariz GM. Therapeutic stimulation versus ablation. Handb Clin Neurol 2013;116:63-71.

    PubMed  Article  Google Scholar 

  114. 114.

    Krack P, Martinez-Fernandez R, Del Alamo M, Obeso JA. Current applications and limitations of surgical treatments for movement disorders. Mov Disord 2017;32(1):36-52.

    PubMed  Article  Google Scholar 

  115. 115.

    Intemann PM, Masterman D, Subramanian I, et al. Staged bilateral pallidotomy for treatment of Parkinson disease. J Neurosurg 2001;94(3):437-44.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Junque C, Alegret M, Nobbe FA, et al. Cognitive and behavioral changes after unilateral posteroventral pallidotomy: relationship with lesional data from MRI. Mov Disord 1999;14(5):780-789.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Lozano AM, Lang AE. Pallidotomy for Parkinson’s disease. Neurosurg Clin N Am 1998;9(2):325-336.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Matsumoto K, Shichijo F, Fukami T. Long-term follow-up review of cases of Parkinson’s disease after unilateral or bilateral thalamotomy. J Neurosurg 1984;60(5):1033-1044.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Merello M, Starkstein S, Nouzeilles MI, Kuzis G, Leiguarda R. Bilateral pallidotomy for treatment of Parkinson’s disease induced corticobulbar syndrome and psychic akinesia avoidable by globus pallidus lesion combined with contralateral stimulation. J Neurol Neurosurg Psychiatry 2001;71(5):611-614.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Louw DF, Burchiel KJ. Ablative therapy for movement disorders. Complications in the treatment of movement disorders. Neurosurg Clin N Am 1998;9(2):367-373.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Kim R, Alterman R, Kelly PJ, et al. Efficacy of bilateral pallidotomy. Neurosurg Focus 1997;2(3):e8.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Khabarova EA, Denisova NP, Dmitriev AB, Slavin KV, Verhagen Metman L. Deep Brain Stimulation of the Subthalamic Nucleus in Patients with Parkinson Disease with Prior Pallidotomy or Thalamotomy. Brain Sci. 2018 Apr 16;8(4):66. https://doi.org/10.3390/brainsci8040066. PMID: 29659494; PMCID: PMC5924402.

  123. 123.

    Ondo WG, Silay Y, Almaguer M, Jankovic J. Subthalamic deep brain stimulation in patients with a previous pallidotomy. Mov Disord 2006;21(8):1252-1254.

    PubMed  Article  Google Scholar 

  124. 124.

    Alvarez L, Macias R, Guridi J, et al. Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 2001;16(1):72-78.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Barlas O, Hanagasi HA, Imer M, Sahin HA, Sencer S, Emre M. Do unilateral ablative lesions of the subthalamic nucleu in parkinsonian patients lead to hemiballism? Mov Disord 2001;16(2):306-310.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Patel NK, Heywood P, O'Sullivan K, McCarter R, Love S, Gill SS. Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain 2003;126(Pt 5):1136-1145.

    PubMed  Article  Google Scholar 

  127. 127.

    Martínez-Fernández R, Rodríguez-Rojas R, Del Álamo M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol 2018;17(1):54-63.

    Article  PubMed  Google Scholar 

  128. 128.

    Fox MW, Ahlskog JE, Kelly PJ. Stereotactic ventrolateralis thalamotomy for medically refractory tremor in post-levodopa era Parkinson’s disease patients. J Neurosurg 1991;75(5):723-730.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Nagaseki Y, Shibazaki T, Hirai T, et al. Long-term follow-up results of selective VIM-thalamotomy. J Neurosurg 1986;65(3):296-302.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Jankovic J, Cardoso F, Grossman RG, Hamilton WJ. Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery 1995;37(4):680-687.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Kelly PJ, Gillingham FJ. The long-term results of stereotaxic surgery and L-dopa therapy in patients with Parkinson’s disease: a 10-year follow-up study. J Neurosurg 1980;53(3):332-337.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Dallapiazza RF, Lee DJ, De Vloo P, et al. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 2019;90(4):474-482.

    PubMed  Article  Google Scholar 

  133. 133.

    Baron MS, Vitek JL, Bakay RA, Green J, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol 1996;40(3):355-366.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Fine J, Duff J, Chen R, et al. Long-term follow-up of unilateral pallidotomy in advanced Parkinson’s disease. N Engl J Med 2000;342(23):1708-1714.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Kishore A, Turnbull IM, Snow BJ, et al. Efficacy, stability and predictors of outcome of pallidotomy for Parkinson’s disease. Six-month follow-up with additional 1-year observations. Brain 1997;120 ( Pt 5):729-737.

    PubMed  Article  Google Scholar 

  136. 136.

    Hariz MI, Bergenheim AT. A 10-year follow-up review of patients who underwent Leksell's posteroventral pallidotomy for Parkinson disease. J Neurosurg 2001;94(4):552-558.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Samuel M, Caputo E, Brooks D, Schrag A, et al. A study of medial pallidotomy for Parkinson’s disease: clinical outcome, MRI location and complications. Brain J Neurol 1998;121(1):59-75.

    Article  Google Scholar 

  138. 138.

    Lombardi WJ, Gross RE, Trepanier LL, Lang AE, Lozano AM, Saint-Cyr JA. Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson’s disease: support for the existence of cognitive circuits in the human pallidum. Brain 2000;123 ( Pt 4):746-758.

    PubMed  Article  Google Scholar 

  139. 139.

    Saint-Cyr J, Trépanier L, Lang A, Lozano A. Neuropsychological outcome of posteroventral pallidotomy in parkinsonian patients. Mov Disord 1996;11(suppl 1):161.

    Google Scholar 

  140. 140.

    Soukup VM, Ingram F, Schiess MC, Bonnen JG, Nauta HJ, Calverley JR. Cognitive sequelae of unilateral posteroventral pallidotomy. Arch Neurol 1997;54(8):947-950.

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Cosman E. Radiofrequency lesions. Textbook of stereotactic and functional neurosurgery 1996.

    Google Scholar 

  142. 142.

    Duma CM. Movement disorder radiosurgery—planning, physics and complication avoidance, Prog Neurol Surg 2007;20:249-66.

    PubMed  Article  Google Scholar 

  143. 143.

    Young RF, Jacques S, Mark R, et al. Gamma knife thalamotomy for treatment of tremor: long-term results. J Neurosurg 2000;93 Suppl 3:128-35.

    PubMed  Article  Google Scholar 

  144. 144.

    Duma CM, Jacques DB, Kopyov OV, Mark RJ, Copcutt B, Farokhi HK. Gamma knife radiosurgery for thalamotomy in parkinsonian tremor: a five-year experience. J Neurosurg 1998;88(6):1044-9.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Franzini A, Moosa S, Prada F, Elias WJ. Ultrasound ablation in neurosurgery: current clinical applications and future perspectives. Neurosurgery 2020;87(1):1-10.

    PubMed  Article  Google Scholar 

  146. 146.

    Bond AE, Shah BB, Huss DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74(12):1412-1418.

    PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Schlesinger I, Eran A, Sinai A, et al. MRI Guided Focused Ultrasound Thalamotomy for Moderate-to-Severe Tremor in Parkinson's Disease. Parkinsons Dis. 2015;2015:219149. https://doi.org/10.1155/2015/219149

  148. 148.

    Zaaroor M, Sinai A, Goldsher D, Eran A, Nassar M, Schlesinger I. Magnetic resonance–guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson's disease and essential tremor cases. J Neurosurg 2017;128(1):202-210.

    PubMed  Article  Google Scholar 

  149. 149.

    Jung NY, Park CK, Kim M, Lee PH, Sohn YH, Chang JW. The efficacy and limits of magnetic resonance–guided focused ultrasound pallidotomy for Parkinson’s disease: a phase I clinical trial. J Neurosurg 2018;130(6):1853-1861.

    Article  Google Scholar 

  150. 150.

    Na YC, Chang WS, Jung HH, Kweon EJ, Chang JW. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease. Neurology 2015;85(6):549-51.

    Article  PubMed  Google Scholar 

  151. 151.

    Magara A, Buhler R, Moser D, Kowalski M, Pourtehrani P, Jeanmonod D. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J Ther Ultrasound 2014;2:11.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

Margi Patel received funding from the Parkinson’s Foundation Fellowship Grant.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vibhash D. Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.D., Patel, M. & Miocinovic, S. Surgical Treatment of Parkinson’s Disease: Devices and Lesion Approaches. Neurotherapeutics 17, 1525–1538 (2020). https://doi.org/10.1007/s13311-020-00939-x

Download citation

Key Words

  • Deep brain stimulation
  • ablation
  • RF ablation
  • stereotactic radiosurgery
  • focused ultrasound