Advertisement

Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury

Review

Abstract

The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.

Keywords

Motor cortex Somatosensory cortex Cortical reorganization Plasticity Spinal cord injury Intracortical circuits Rodents Primates 

Notes

Acknowledgements

Hisham Mohammed would like to acknowledge Prof. Neeraj Jain for the doctoral training.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Funding Information

Financial support was provided by the Winifred Masterson Burke Foundation and the NIH Common Fund (1DP2NS106663).

Supplementary material

13311_2018_638_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1225 kb)

References

  1. 1.
    Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiol Behav. 2002;77(4–5):677–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Luppino G, Rizzolatti G. The Organization of the Frontal Motor Cortex. News Physiol Sci. 2000;15:219–24.PubMedGoogle Scholar
  3. 3.
    Young NA, Vuong J, Teskey GC. Development of motor maps in rats and their modulation by experience. J Neurophysiol. 2012;108(5):1309–17. doi: https://doi.org/10.1152/jn.01045.2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Biane JS, Scanziani M, Tuszynski MH, Conner JM. Motor cortex maturation is associated with reductions in recurrent connectivity among functional subpopulations and increases in intrinsic excitability. J Neurosci. 2015;35(11):4719–28. doi: https://doi.org/10.1523/JNEUROSCI.2792-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Huntley GW. Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex. Cereb Cortex. 1997;7(2):143–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Weiss DS, Keller A. Specific patterns of intrinsic connections between representation zones in the rat motor cortex. Cereb Cortex. 1994;4(2):205–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Huntley GW, Jones EG. Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J Neurophysiol. 1991;66(2):390–413. doi: https://doi.org/10.1152/jn.1991.66.2.390.PubMedCrossRefGoogle Scholar
  8. 8.
    Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D. On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol. 2009;102(4):2131–41. doi: https://doi.org/10.1152/jn.91319.2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Mohammed H, Jain N. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections. J Comp Neurol. 2014;522(3):528–45. doi: https://doi.org/10.1002/cne.23424.PubMedCrossRefGoogle Scholar
  10. 10.
    Mohammed H, Jain N. Ipsilateral cortical inputs to the rostral and caudal motor areas in rats. J Comp Neurol. 2016;524(15):3104–23. doi: https://doi.org/10.1002/cne.24011.PubMedCrossRefGoogle Scholar
  11. 11.
    Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T. A comprehensive excitatory input map of the striatum reveals novel functional organization. Elife. 2016;5.  https://doi.org/10.7554/eLife.19103.
  12. 12.
    Aoki S, Coulon P, Ruigrok TJH. Multizonal Cerebellar Influence Over Sensorimotor Areas of the Rat Cerebral Cortex. Cereb Cortex. 2017. doi: https://doi.org/10.1093/cercor/bhx343.
  13. 13.
    Alloway KD, Smith JB, Beauchemin KJ. Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. J Comp Neurol. 2010;518(22):4546–66. doi: https://doi.org/10.1002/cne.22477.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wang X, Liu Y, Li X, Zhang Z, Yang H, Zhang Y et al. Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills. Cell. 2017;171(2):440–55.e14. doi: https://doi.org/10.1016/j.cell.2017.08.014.PubMedCrossRefGoogle Scholar
  15. 15.
    Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.PubMedCrossRefGoogle Scholar
  16. 16.
    Remple MS, Bruneau RM, VandenBerg PM, Goertzen C, Kleim JA. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res. 2001;123(2):133–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Huntley GW. Differential effects of abnormal tactile experience on shaping representation patterns in developing and adult motor cortex. J Neurosci. 1997b;17(23):9220–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Merzenich MM, Kaas JH, Wall JT, Sur M, Nelson RJ, Felleman DJ. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience. 1983;10(3):639–65. doi: https://doi.org/10.1016/0306-4522(83)90208-7.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanes JN, Suner S, Donoghue JP. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res. 1990;79(3):479–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Fritsch G, Hitzig E. Electric excitability of the cerebrum (Uber die elektrische Erregbarkeit des Grosshirns). Epilepsy Behav. 2009;15(2):123–30. doi: https://doi.org/10.1016/j.yebeh.2009.03.001.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrier D. On the Localisation of the Functions of the Brain. Br Med J. 1874;2(729):766–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Penfield W, Rasmussen, T. The Cerebral Cortex of Man. New York: The Mamillan Company; 1952.Google Scholar
  24. 24.
    Leyton A, Sherrington, CS. Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla. Q J Exp Physiol. 1917(11):135–222.CrossRefGoogle Scholar
  25. 25.
    Graziano MS, Taylor CS, Moore T. Complex movements evoked by microstimulation of precentral cortex. Neuron. 2002;34(5):841–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Ramanathan D, Conner JM, Tuszynski MH. A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc Natl Acad Sci U S A. 2006;103(30):11370–5. doi: https://doi.org/10.1073/pnas.0601065103.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Geyer S, Matelli M, Luppino G, Zilles K. Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl). 2000;202(6):443–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Nudo RJ, Frost S.B. The evolution of motor cortex and motor systems. Evolution of Nervous Systems. Cambridge: Academic Press; 2007.Google Scholar
  29. 29.
    Lende RA. Cerebral cortex: a sensorimotor amalgam in the marsupiala. Science. 1963;141(3582):730–2.PubMedCrossRefGoogle Scholar
  30. 30.
    Donoghue JP, Wise SP. The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol. 1982;212(1):76–88. doi: https://doi.org/10.1002/cne.902120106.PubMedCrossRefGoogle Scholar
  31. 31.
    Tandon S, Kambi N, Jain N. Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths. Eur J Neurosci. 2008;27(1):228–37. doi: https://doi.org/10.1111/j.1460-9568.2007.05997.x. PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Li CX, Waters RS. Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Can J Neurol Sci. 1991;18(1):28–38.PubMedCrossRefGoogle Scholar
  33. 33.
    Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N, Kleim JA et al. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb Cortex. 2011;21(4):865–76. doi: https://doi.org/10.1093/cercor/bhq159.PubMedCrossRefGoogle Scholar
  34. 34.
    Sanderson KJ, Welker W, Shambes GM. Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats. Brain Res. 1984;292(2):251–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Hummelsheim H, Wiesendanger M. Is the hindlimb representation of the rat’s cortex a ‘sensorimotor amalgam’? Brain Res. 1985;346(1):75–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF et al. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. 1986;396(1):77–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Hall R, Lindholm, E.P. Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 1974;66:23–8.CrossRefGoogle Scholar
  38. 38.
    Neafsey EJ, Sievert C. A second forelimb motor area exists in rat frontal cortex. Brain Res. 1982;232(1):151–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Hyland B. Neural activity related to reaching and grasping in rostral and caudal regions of rat motor cortex. Behav Brain Res. 1998;94(2):255–69.PubMedCrossRefGoogle Scholar
  40. 40.
    Saiki A, Kimura R, Samura T, Fujiwara-Tsukamoto Y, Sakai Y, Isomura Y. Different modulation of common motor information in rat primary and secondary motor cortices. PLoS One. 2014;9(6):e98662. doi: https://doi.org/10.1371/journal.pone.0098662.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sanes JN, Suner S, Lando JF, Donoghue JP. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proc Natl Acad Sci U S A. 1988;85(6):2003–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Donoghue JP, Suner S, Sanes JN. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res. 1990;79(3):492–503.PubMedCrossRefGoogle Scholar
  43. 43.
    Schieber MH, Deuel RK. Primary motor cortex reorganization in a long-term monkey amputee. Somatosens Mot Res. 1997;14(3):157–67.PubMedCrossRefGoogle Scholar
  44. 44.
    Wu CW, Kaas JH. Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. J Neurosci. 1999;19(17):7679–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Qi HX, Stepniewska I, Kaas JH. Reorganization of primary motor cortex in adult macaque monkeys with long-standing amputations. J Neurophysiol. 2000;84(4):2133–47. doi: https://doi.org/10.1152/jn.2000.84.4.2133.PubMedCrossRefGoogle Scholar
  46. 46.
    Donoghue JP, Sanes JN. Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex. Proc Natl Acad Sci U S A. 1987;84(4):1123–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Castro-Alamancos MA, Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience. 1995;68(3):793–805.PubMedCrossRefGoogle Scholar
  48. 48.
    Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9. doi: https://doi.org/10.1152/jn.1996.75.5.2144.PubMedCrossRefGoogle Scholar
  49. 49.
    Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol. 2003;89(6):3205–14. doi: https://doi.org/10.1152/jn.01143.2002.PubMedCrossRefGoogle Scholar
  50. 50.
    Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Takahashi M, Vattanajun A, Umeda T, Isa K, Isa T. Large-scale reorganization of corticofugal fibers after neonatal hemidecortication for functional restoration of forelimb movements. Eur J Neurosci. 2009;30(10):1878–87. doi: https://doi.org/10.1111/j.1460-9568.2009.06989.x.PubMedCrossRefGoogle Scholar
  52. 52.
    Umeda T, Takahashi M, Isa K, Isa T. Formation of descending pathways mediating cortical command to forelimb motoneurons in neonatally hemidecorticated rats. J Neurophysiol. 2010;104(3):1707–16. doi: https://doi.org/10.1152/jn.00968.2009.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin JH, Lee SJ. Activity-dependent competition between developing corticospinal terminations. Neuroreport. 1999;10(11):2277–82.PubMedCrossRefGoogle Scholar
  54. 54.
    Umeda T, Isa T. Differential contributions of rostral and caudal frontal forelimb areas to compensatory process after neonatal hemidecortication in rats. Eur J Neurosci. 2011;34(9):1453–60. doi: https://doi.org/10.1111/j.1460-9568.2011.07866.x.PubMedCrossRefGoogle Scholar
  55. 55.
    Salimi I, Friel, K.M., Martin, J.H. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci. 2008;28(29):7426–34.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wanakhachornkrai O, Umeda T, Isa K, Tantisira MH, Tantisira B, Isa T. Reorganization of sensory pathways after neonatal hemidecortication in rats. Neurosci Res. 2014;79:94–8. doi: https://doi.org/10.1016/j.neures.2013.11.003.PubMedCrossRefGoogle Scholar
  57. 57.
    Kokotilo KJ, Eng, J.J., Curt, A. Reorganization and preservation of motor control of the brain in spinal cord injury: a systematic review. J Neurotauma. 2009;26(11):2113–26.CrossRefGoogle Scholar
  58. 58.
    Nardone R, Holler Y, Brigo F, Seidl M, Christova M, Bergmann J et al. Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res. 2013;1504:58–73. doi: https://doi.org/10.1016/j.brainres.2012.12.034.PubMedCrossRefGoogle Scholar
  59. 59.
    Nishimura Y, Onoe H, Morichika Y, Perfiliev S, Tsukada H, Isa T. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science. 2007;318(5853):1150–5. doi: https://doi.org/10.1126/science.1147243.PubMedCrossRefGoogle Scholar
  60. 60.
    Schmidlin E, Wannier T, Bloch J, Rouiller EM. Progressive plastic changes in the hand representation of the primary motor cortex parallel incomplete recovery from a unilateral section of the corticospinal tract at cervical level in monkeys. Brain Res. 2004;1017(1–2):172–83. doi: https://doi.org/10.1016/j.brainres.2004.05.036.PubMedCrossRefGoogle Scholar
  61. 61.
    Schmidlin E, Wannier T, Bloch J, Belhaj-Saif A, Wyss AF, Rouiller EM. Reduction of the hand representation in the ipsilateral primary motor cortex following unilateral section of the corticospinal tract at cervical level in monkeys. BMC Neurosci. 2005;6:56. doi: https://doi.org/10.1186/1471-2202-6-56. PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Qi HX, Jain N, Collins CE, Lyon DC, Kaas JH. Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy. Proc Natl Acad Sci U S A. 2010;107(7):3192–7. doi: https://doi.org/10.1073/pnas.0914962107.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kambi N, Tandon S, Mohammed H, Lazar L, Jain N. Reorganization of the primary motor cortex of adult macaque monkeys after sensory loss resulting from partial spinal cord injuries. J Neurosci. 2011;31(10):3696–707. doi: https://doi.org/10.1523/JNEUROSCI.5187-10.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fouad K, Pedersen V, Schwab ME, Brosamle C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol. 2001;11(22):1766–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Hollis ER, 2nd, Ishiko N, Yu T, Lu CC, Haimovich A, Tolentino K et al. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury. Nat Neurosci. 2016;19(5):697–705. doi: https://doi.org/10.1038/nn.4282.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hilton BJ, Anenberg E, Harrison TC, Boyd JD, Murphy TH, Tetzlaff W. Re-Establishment of Cortical Motor Output Maps and Spontaneous Functional Recovery via Spared Dorsolaterally Projecting Corticospinal Neurons after Dorsal Column Spinal Cord Injury in Adult Mice. J Neurosci. 2016;36(14):4080–92. doi: https://doi.org/10.1523/JNEUROSCI.3386-15.2016.PubMedCrossRefGoogle Scholar
  67. 67.
    Martinez M, Delcour M, Russier M, Zennou-Azogui Y, Xerri C, Coq JO et al. Differential tactile and motor recovery and cortical map alteration after C4-C5 spinal hemisection. Exp Neurol. 2010;221(1):186–97. doi: https://doi.org/10.1016/j.expneurol.2009.10.022.PubMedCrossRefGoogle Scholar
  68. 68.
    Tandon S, Kambi N, Mohammed H, Jain N. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries. Eur J Neurosci. 2013;38(2):2271–9. doi: https://doi.org/10.1111/ejn.12218.PubMedCrossRefGoogle Scholar
  69. 69.
    Oza CS, Giszter SF. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training. Exp Neurol. 2014;256:57–69. doi: https://doi.org/10.1016/j.expneurol.2014.03.012.PubMedCrossRefGoogle Scholar
  70. 70.
    Oza CS, Giszter SF. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats. J Neurosci. 2015;35(18):7174–89. doi: https://doi.org/10.1523/JNEUROSCI.4366-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Manohar A, Foffani G, Ganzer PD, Bethea JR, Moxon KA. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats. Elife. 2017;6.  https://doi.org/10.7554/eLife.23532.
  72. 72.
    Athanasiou A, Klados MA, Pandria N, Foroglou N, Kavazidi KR, Polyzoidis K et al. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury. Front Hum Neurosci. 2017;11:517. doi: https://doi.org/10.3389/fnhum.2017.00517.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bruehlmeier M, Dietz V, Leenders KL, Roelcke U, Missimer J, Curt A. How does the human brain deal with a spinal cord injury? Eur J Neurosci. 1998;10(12):3918–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Curt A, Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond MC, Kollias SS. Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain. 2002a;125(Pt 11):2567–78.PubMedCrossRefGoogle Scholar
  75. 75.
    Curt A, Bruehlmeier M, Leenders KL, Roelcke U, Dietz V. Differential effect of spinal cord injury and functional impairment on human brain activation. J Neurotrauma. 2002b;19(1):43–51. doi: https://doi.org/10.1089/089771502753460222.PubMedCrossRefGoogle Scholar
  76. 76.
    Alkadhi H, Brugger P, Boendermaker SH, Crelier G, Curt A, Hepp-Reymond MC et al. What disconnection tells about motor imagery: evidence from paraplegic patients. Cereb Cortex. 2005;15(2):131–40. doi: https://doi.org/10.1093/cercor/bhh116.PubMedCrossRefGoogle Scholar
  77. 77.
    Cramer SC, Lastra L, Lacourse MG, Cohen MJ. Brain motor system function after chronic, complete spinal cord injury. Brain. 2005;128(Pt 12):2941–50. doi: https://doi.org/10.1093/brain/awh648. PubMedCrossRefGoogle Scholar
  78. 78.
    Green JB, Sora E, Bialy Y, Ricamato A, Thatcher RW. Cortical sensorimotor reorganization after spinal cord injury: an electroencephalographic study. Neurology. 1998;50(4):1115–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Green JB, Sora E, Bialy Y, Ricamato A, Thatcher RW. Cortical motor reorganization after paraplegia: an EEG study. Neurology. 1999;53(4):736–43.PubMedCrossRefGoogle Scholar
  80. 80.
    Lotze M, Laubis-Herrmann U, Topka H, Erb M, Grodd W. Reorganization in the primary motor cortex after spinal cord injury—A functional Magnetic Resonance (fMRI) study. Restor Neurol Neurosci. 1999;14(2–3):183–7.PubMedGoogle Scholar
  81. 81.
    Lotze M, Laubis-Herrmann U, Topka H. Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury. Restor Neurol Neurosci. 2006;24(2):97–107.PubMedGoogle Scholar
  82. 82.
    Shoham S, Halgren E, Maynard EM, Normann RA. Motor-cortical activity in tetraplegics. Nature. 2001;413(6858):793. doi: https://doi.org/10.1038/35101651.PubMedCrossRefGoogle Scholar
  83. 83.
    Mikulis DJ, Jurkiewicz MT, McIlroy WE, Staines WR, Rickards L, Kalsi-Ryan S et al. Adaptation in the motor cortex following cervical spinal cord injury. Neurology. 2002;58(5):794–801. doi: https://doi.org/10.1212/WNL.58.5.794.PubMedCrossRefGoogle Scholar
  84. 84.
    Turner JA, Lee JS, Schandler SL, Cohen MJ. An fMRI investigation of hand representation in paraplegic humans. Neurorehabil Neural Repair. 2003;17(1):37–47. doi: https://doi.org/10.1177/0888439002250443.PubMedCrossRefGoogle Scholar
  85. 85.
    Choe AS, Belegu V, Yoshida S, Joel S, Sadowsky CL, Smith SA et al. Extensive neurological recovery from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity. Front Hum Neurosci. 2013;7:290. doi: https://doi.org/10.3389/fnhum.2013.00290.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Oni-Orisan A, Kaushal M, Li W, Leschke J, Ward BD, Vedantam A et al. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study. PLoS One. 2016;11(3):e0150351. doi: https://doi.org/10.1371/journal.pone.0150351.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kaushal M, Oni-Orisan A, Chen G, Li W, Leschke J, Ward BD et al. Evaluation of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Large-Scale Network Analysis Using Network-Based Statistic. J Neurotrauma. 2017;34(6):1278–82. doi: https://doi.org/10.1089/neu.2016.4649.PubMedCrossRefGoogle Scholar
  88. 88.
    Brus-Ramer M, Carmel JB, Martin JH. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. J Neurosci. 2009;29(19):6196–206. doi: https://doi.org/10.1523/JNEUROSCI.5852-08.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7(3):269–77. doi: https://doi.org/10.1038/nn1195.PubMedCrossRefGoogle Scholar
  90. 90.
    Lang C, Guo X, Kerschensteiner M, Bareyre FM. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury. PLoS One. 2012;7(1):e30461. doi: https://doi.org/10.1371/journal.pone.0030461.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mosberger AC, Miehlbradt JC, Bjelopoljak N, Schneider MP, Wahl AS, Ineichen BV et al. Axotomized Corticospinal Neurons Increase Supra-Lesional Innervation and Remain Crucial for Skilled Reaching after Bilateral Pyramidotomy. Cereb Cortex. 2018;28(2):625–43. doi: https://doi.org/10.1093/cercor/bhw405.PubMedCrossRefGoogle Scholar
  92. 92.
    Filli L, Engmann AK, Zorner B, Weinmann O, Moraitis T, Gullo M et al. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury. J Neurosci. 2014;34(40):13399–410. doi: https://doi.org/10.1523/JNEUROSCI.0701-14.2014.PubMedCrossRefGoogle Scholar
  93. 93.
    Zorner B, Bachmann LC, Filli L, Kapitza S, Gullo M, Bolliger M et al. Chasing central nervous system plasticity: the brainstem’s contribution to locomotor recovery in rats with spinal cord injury. Brain. 2014;137(Pt 6):1716–32. doi: https://doi.org/10.1093/brain/awu078. PubMedCrossRefGoogle Scholar
  94. 94.
    Ghosh A, Haiss F, Sydekum E, Schneider R, Gullo M, Wyss MT et al. Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci. 2010;13(1):97–104. doi: https://doi.org/10.1038/nn.2448.PubMedCrossRefGoogle Scholar
  95. 95.
    Ghosh A, Sydekum E, Haiss F, Peduzzi S, Zorner B, Schneider R et al. Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J Neurosci. 2009;29(39):12210–9. doi: https://doi.org/10.1523/JNEUROSCI.1828-09.2009.PubMedCrossRefGoogle Scholar
  96. 96.
    Weidner N, Ner A, Salimi N, Tuszynski MH. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A. 2001;98(6):3513–8. doi: https://doi.org/10.1073/pnas.051626798.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci. 2010;13(12):1505–10. doi: https://doi.org/10.1038/nn.2691.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Friedli L, Rosenzweig ES, Barraud Q, Schubert M, Dominici N, Awai L et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med. 2015;7(302):302ra134. doi: https://doi.org/10.1126/scitranslmed.aac5811.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Nakagawa H, Ninomiya T, Yamashita T, Takada M. Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques. Sci Rep. 2015;5:11986. doi: https://doi.org/10.1038/srep11986.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Darian-Smith C, Lilak, A., Garner, J., Irvine, K.A. Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys. J Neurosci. 2014;34(37):12267–79.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Esposito MS, Capelli, P., Arber, S. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature. 2014;508(7496):351–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Ganchrow D, Bernstein JJ. Bouton renewal patterns in rat hindlimb cortex after thoracic dorsal funicular lesions. J Neurosci Res. 1981;6(4):525–37. doi: https://doi.org/10.1002/jnr.490060409.PubMedCrossRefGoogle Scholar
  103. 103.
    Ganchrow D, Bernstein JJ. Thoracic dorsal funicular lesions affect the bouton patterns on, and diameters of, layer VB pyramidal cell somata in rat hindlimb cortex. J Neurosci Res. 1985;14(1):71–81. doi: https://doi.org/10.1002/jnr.490140107.PubMedCrossRefGoogle Scholar
  104. 104.
    Ghosh A, Peduzzi S, Snyder M, Schneider R, Starkey M, Schwab ME. Heterogeneous spine loss in layer 5 cortical neurons after spinal cord injury. Cereb Cortex. 2012;22(6):1309–17. doi: https://doi.org/10.1093/cercor/bhr191.PubMedCrossRefGoogle Scholar
  105. 105.
    Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS. Remodeling of synaptic structures in the motor cortex following spinal cord injury. Exp Neurol. 2006;198(2):401–15. doi: https://doi.org/10.1016/j.expneurol.2005.12.010.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang K, Zhang J, Zhou Y, Chen C, Li W, Ma L et al. Remodeling the Dendritic Spines in the Hindlimb Representation of the Sensory Cortex after Spinal Cord Hemisection in Mice. PLoS One. 2015;10(7):e0132077. doi: https://doi.org/10.1371/journal.pone.0132077.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Henderson LA, Gustin SM, Macey PM, Wrigley PJ, Siddall PJ. Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy. J Neurosci. 2011;31(7):2630–7. doi: https://doi.org/10.1523/JNEUROSCI.2717-10.2011.PubMedCrossRefGoogle Scholar
  108. 108.
    Jain N, Catania KC, Kaas JH. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature. 1997;386(6624):495–8. doi: https://doi.org/10.1038/386495a0.PubMedCrossRefGoogle Scholar
  109. 109.
    Liao CC, Reed JL, Qi HX, Sawyer EK, Kaas JH. Second-order spinal cord pathway contributes to cortical responses after long recoveries from dorsal column injury in squirrel monkeys. Proc Natl Acad Sci U S A. 2018;115(16):4258–63. doi: https://doi.org/10.1073/pnas.1718826115.PubMedCrossRefGoogle Scholar
  110. 110.
    Liao CC, DiCarlo GE, Gharbawie OA, Qi HX, Kaas JH. Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: A pathway that could contribute to recovery after spinal cord injury. J Comp Neurol. 2015;523(14):2138–60. doi: https://doi.org/10.1002/cne.23783.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jain N, Qi HX, Collins CE, Kaas JH. Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. J Neurosci. 2008;28(43):11042–60. doi: https://doi.org/10.1523/JNEUROSCI.2334-08.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kambi N, Halder P, Rajan R, Arora V, Chand P, Arora M et al. Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity. Nat Commun. 2014;5:3602. doi: https://doi.org/10.1038/ncomms4602.PubMedCrossRefGoogle Scholar
  113. 113.
    Halder P, Kambi N, Chand P, Jain N. Altered Expression of Reorganized Inputs as They Ascend From the Cuneate Nucleus to Cortical Area 3b in Monkeys With Long-Term Spinal Cord Injuries. Cereb Cortex. 2017:1–17.  https://doi.org/10.1093/cercor/bhx256.
  114. 114.
    Jain N, Florence SL, Qi HX, Kaas JH. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc Natl Acad Sci U S A. 2000;97(10):5546–50. doi: https://doi.org/10.1073/pnas.090572597.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Graziano A, Jones EG. Early withdrawal of axons from higher centers in response to peripheral somatosensory denervation. J Neurosci. 2009;29(12):3738–48. doi: https://doi.org/10.1523/JNEUROSCI.5388-08.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sengelaub DR, Muja N, Mills AC, Myers WA, Churchill JD, Garraghty PE. Denervation-induced sprouting of intact peripheral afferents into the cuneate nucleus of adult rats. Brain Res. 1997;769(2):256–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Chand P, Jain N. Intracortical and Thalamocortical Connections of the Hand and Face Representations in Somatosensory Area 3b of Macaque Monkeys and Effects of Chronic Spinal Cord Injuries. J Neurosci. 2015;35(39):13475–86. doi: https://doi.org/10.1523/JNEUROSCI.2069-15.2015.PubMedCrossRefGoogle Scholar
  118. 118.
    Fang PC, Jain N, Kaas JH. Few intrinsic connections cross the hand-face border of area 3b of New World monkeys. J Comp Neurol. 2002;454(3):310–9. doi: https://doi.org/10.1002/cne.10433.PubMedCrossRefGoogle Scholar
  119. 119.
    Liao CC, Reed JL, Kaas JH, Qi HX. Intracortical connections are altered after long-standing deprivation of dorsal column inputs in the hand region of area 3b in squirrel monkeys. J Comp Neurol. 2016;524(7):1494–526. doi: https://doi.org/10.1002/cne.23921.PubMedCrossRefGoogle Scholar
  120. 120.
    Tandon S, Kambi N, Lazar L, Mohammed H, Jain N. Large-scale expansion of the face representation in somatosensory areas of the lateral sulcus after spinal cord injuries in monkeys. J Neurosci. 2009;29(38):12009–19. doi: https://doi.org/10.1523/JNEUROSCI.2118-09.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ramachandran VS, Stewart, M., Rogers-Ramachandran, D.C. Perceptual correlates of massive cortical reorganization. Neuroreport. 1992;3(7):583–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Flor H, Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., Larbig, W., Taub, E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.PubMedCrossRefGoogle Scholar
  123. 123.
    Jain N, Diener PS, Coq JO, Kaas JH. Patterned activity via spinal dorsal quadrant inputs is necessary for the formation of organized somatosensory maps. J Neurosci. 2003;23(32):10321–30.PubMedCrossRefGoogle Scholar
  124. 124.
    Jain N, Florence SL, Kaas JH. Limits on plasticity in somatosensory cortex of adult rats: hindlimb cortex is not reactivated after dorsal column section. J Neurophysiol. 1995;73(4):1537–46. doi: https://doi.org/10.1152/jn.1995.73.4.1537.PubMedCrossRefGoogle Scholar
  125. 125.
    Aguilar J, Humanes-Valera D, Alonso-Calvino E, Yague JG, Moxon KA, Oliviero A et al. Spinal cord injury immediately changes the state of the brain. J Neurosci. 2010;30(22):7528–37. doi: https://doi.org/10.1523/JNEUROSCI.0379-10.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact somatosensory cortex immediately after spinal cord injury. PLoS One. 2013;8(7):e69655. doi: https://doi.org/10.1371/journal.pone.0069655.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Endo T, Spenger, C., Tominaga, T., Brené, S., Olson, L. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain130. 2007;130(11):2951–61.CrossRefGoogle Scholar
  128. 128.
    Sydekum E, Ghosh A, Gullo M, Baltes C, Schwab M, Rudin M. Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats. Neuroimage. 2014;87:72–9. doi: https://doi.org/10.1016/j.neuroimage.2013.10.045.PubMedCrossRefGoogle Scholar
  129. 129.
    Martinez M, Brezun JM, Zennou-Azogui Y, Baril N, Xerri C. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury. Eur J Neurosci. 2009;30(12):2356–67. doi: https://doi.org/10.1111/j.1460-9568.2009.07019.x.PubMedCrossRefGoogle Scholar
  130. 130.
    Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251(4996):944–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Keller A. Intrinsic synaptic organization of the motor cortex. Cereb Cortex. 1993b;3(5):430–41.PubMedCrossRefGoogle Scholar
  132. 132.
    Schieber MH. Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol. 2001;86(5):2125–43. doi: https://doi.org/10.1152/jn.2001.86.5.2125.PubMedCrossRefGoogle Scholar
  133. 133.
    Capaday C. The integrated nature of motor cortical function. Neuroscientist. 2004;10(3):207–20. doi: https://doi.org/10.1177/107385403262109.PubMedCrossRefGoogle Scholar
  134. 134.
    Capaday C, Ethier C, Van Vreeswijk C, Darling WG. On the functional organization and operational principles of the motor cortex. Front Neural Circuits. 2013;7:66. doi: https://doi.org/10.3389/fncir.2013.00066.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Dea M, Hamadjida A, Elgbeili G, Quessy S, Dancause N. Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in Cebus apella. Cereb Cortex. 2016;26(4):1747–61. doi: https://doi.org/10.1093/cercor/bhv324.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Stepniewska I, Preuss TM, Kaas JH. Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys. J Comp Neurol. 2006;495(6):691–708. doi: https://doi.org/10.1002/cne.20906.PubMedCrossRefGoogle Scholar
  137. 137.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Stowe AM, Friel KM et al. Ipsilateral connections of the ventral premotor cortex in a new world primate. J Comp Neurol. 2006;495(4):374–90. doi: https://doi.org/10.1002/cne.20875.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Stepniewska I, Preuss TM, Kaas JH. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J Comp Neurol. 1993;330(2):238–71. doi: https://doi.org/10.1002/cne.903300207.PubMedCrossRefGoogle Scholar
  139. 139.
    Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MG. Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol. 2014;522(4):811–43. doi: https://doi.org/10.1002/cne.23447.PubMedCrossRefGoogle Scholar
  140. 140.
    Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS et al. Neural networks of the mouse neocortex. Cell. 2014;156(5):1096–111. doi: https://doi.org/10.1016/j.cell.2014.02.023.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci. 2013;33(2):748–60. doi: https://doi.org/10.1523/JNEUROSCI.4338-12.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ueta Y, Hirai Y, Otsuka T, Kawaguchi Y. Direction- and distance-dependent interareal connectivity of pyramidal cell subpopulations in the rat frontal cortex. Front Neural Circuits. 2013;7:164. doi: https://doi.org/10.3389/fncir.2013.00164.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Lund JS, Yoshioka T, Levitt JB. Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex. 1993;3(2):148–62.PubMedCrossRefGoogle Scholar
  144. 144.
    Frostig RD, Xiong Y, Chen-Bee CH, Kvasnak E, Stehberg J. Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J Neurosci. 2008;28(49):13274–84. doi: https://doi.org/10.1523/JNEUROSCI.4074-08.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Aroniadou VA, Keller A. The patterns and synaptic properties of horizontal intracortical connections in the rat motor cortex. J Neurophysiol. 1993;70(4):1553–69.PubMedCrossRefGoogle Scholar
  146. 146.
    Rockland KS, Lund JS. Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol. 1983;216(3):303–18. doi: https://doi.org/10.1002/cne.902160307.PubMedCrossRefGoogle Scholar
  147. 147.
    Albus K, Wahle P, Lubke J, Matute C. The contribution of GABA-ergic neurons to horizontal intrinsic connections in upper layers of the cat’s striate cortex. Exp Brain Res. 1991;85(1):235–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Aroniadou-Anderjaska V, Keller A. Intrinsic inhibitory pathways in mouse barrel cortex. Neuroreport. 1996;7(14):2363–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Callaway EM, Katz LC. Emergence and refinement of clustered horizontal connections in cat striate cortex. J Neurosci. 1990;10(4):1134–53.PubMedCrossRefGoogle Scholar
  150. 150.
    Lowel S, Singer W. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science. 1992;255(5041):209–12.PubMedCrossRefGoogle Scholar
  151. 151.
    Stepniewska I, Preuss TM, Kaas JH. Thalamic connections of the primary motor cortex (M1) of owl monkeys. J Comp Neurol. 1994;349(4):558–82. doi: https://doi.org/10.1002/cne.903490405.PubMedCrossRefGoogle Scholar
  152. 152.
    Hunnicutt BJ, Long BR, Kusefoglu D, Gertz KJ, Zhong H, Mao T. A comprehensive thalamocortical projection map at the mesoscopic level. Nat Neurosci. 2014;17(9):1276–85. doi: https://doi.org/10.1038/nn.3780.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Suter BA, Shepherd GM. Reciprocal interareal connections to corticospinal neurons in mouse M1 and S2. J Neurosci. 2015;35(7):2959–74. doi: https://doi.org/10.1523/JNEUROSCI.4287-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Jeong M, Kim Y, Kim J, Ferrante DD, Mitra PP, Osten P et al. Comparative three-dimensional connectome map of motor cortical projections in the mouse brain. Sci Rep. 2016;6:20072. doi: https://doi.org/10.1038/srep20072.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sievert CF, Neafsey EJ. A chronic unit study of the sensory properties of neurons in the forelimb areas of rat sensorimotor cortex. Brain Res. 1986;381(1):15–23.PubMedCrossRefGoogle Scholar
  156. 156.
    Hira R, Ohkubo F, Tanaka YR, Masamizu Y, Augustine GJ, Kasai H et al. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas. Front Neural Circuits. 2013;7:55. doi: https://doi.org/10.3389/fncir.2013.00055.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Stepanyants A, Martinez, L.M., Ferecskó, A.S., Kisvárday, Z.F. The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci U S A 2009;106(9):3555–60.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Boucsein C, Nawrot, M.P., Schnepel, P., Aertsen, A. Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front Neurosci. 2011;5(32).Google Scholar
  159. 159.
    Schnepel P, Kumar A, Zohar M, Aertsen A, Boucsein C. Physiology and Impact of Horizontal Connections in Rat Neocortex. Cereb Cortex. 2015;25(10):3818–35. doi: https://doi.org/10.1093/cercor/bhu265.PubMedCrossRefGoogle Scholar
  160. 160.
    Telfeian AE, Connors BW. Widely integrative properties of layer 5 pyramidal cells support a role for processing of extralaminar synaptic inputs in rat neocortex. Neurosci Lett. 2003;343(2):121–4.PubMedCrossRefGoogle Scholar
  161. 161.
    Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature. 2010;464(7292):1155–60. doi: https://doi.org/10.1038/nature08935.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Hardwick RM, Rajan, V.A., Bastian, A.J., Krakauer, J.W., Celnik, P.A. Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment. Neurorehabil Neural Repair. 2017;31(2):178–89.PubMedCrossRefGoogle Scholar
  163. 163.
    Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. 1998;1(3):230–4. doi: https://doi.org/10.1038/678.PubMedCrossRefGoogle Scholar
  164. 164.
    Rioult-Pedotti MS, Donoghue JP, Dunaevsky A. Plasticity of the synaptic modification range. J Neurophysiol. 2007;98(6):3688–95. doi: https://doi.org/10.1152/jn.00164.2007.PubMedCrossRefGoogle Scholar
  165. 165.
    Fu M, Yu, X., Lu, J., Zuo, Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 2012;483(7387):92–5.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Yang G, Pan, F., Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009 462(7275):920–2.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ma L, Qiao, Q., Tsai, J.W., Yang, G., Li, W., Gan, W.B. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev Neurobiol. 2016;76(3):277–86.PubMedCrossRefGoogle Scholar
  168. 168.
    Wang L, Conner JM, Rickert J, Tuszynski MH. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences. 2011;108(6):2545–50. doi: https://doi.org/10.1073/pnas.1014335108.CrossRefGoogle Scholar
  169. 169.
    Hayashi-Takagi A, Yagishita, S., Nakamura, M., Shirai, F., Wu, Y.I., Loshbaugh, A.L., Kuhlman, B., Hahn, K.M., Kasai, H. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature. 2015;525(7569):333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Peters AJ, Chen SX, Komiyama T. Emergence of reproducible spatiotemporal activity during motor learning. Nature. 2014;510(7504):263–7. doi: https://doi.org/10.1038/nature13235.PubMedCrossRefGoogle Scholar
  171. 171.
    Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis. 2001;8(5):910–22. doi: https://doi.org/10.1006/nbdi.2001.0425.PubMedCrossRefGoogle Scholar
  172. 172.
    Carmichael ST, Chesselet MF. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci. 2002;22(14):6062–70. doi: https://doi.org/10.1523/JNEUROSCI.22-14-06062.2002.PubMedCrossRefGoogle Scholar
  173. 173.
    Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci. 2009;29(6):1719–34. doi: https://doi.org/10.1523/JNEUROSCI.4249-08.2009.PubMedCrossRefGoogle Scholar
  174. 174.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–79. doi: https://doi.org/10.1523/JNEUROSCI.3256-05.2005.PubMedCrossRefGoogle Scholar
  175. 175.
    Murata Y, Higo N, Hayashi T, Nishimura Y, Sugiyama Y, Oishi T et al. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys. J Neurosci. 2015;35(1):84–95. doi: https://doi.org/10.1523/JNEUROSCI.1737-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M et al. Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab. 2010;30(7):1288–95. doi: https://doi.org/10.1038/jcbfm.2010.8.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Friel KM, Barbay, S., Frost, S.B., Plautz, E.J., Hutchinson, D.M., Stowe, A.M., Dancause, N., Zoubina, E.V., Quaney, B.M., Nudo, R.J. Dissociation of sensorimotor deficits after rostral versus caudal lesions in the primary motor cortex hand representation. J Neurophysiol 2005 94(2):1312–24.PubMedCrossRefGoogle Scholar
  178. 178.
    Pineiro R, Pendlebury, S., Johansen-Berg, H., Matthews, P.M. Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke. 2001;32(5):1134–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Starkey ML, Bleul C, Zorner B, Lindau NT, Mueggler T, Rudin M et al. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Brain. 2012;135(Pt 11):3265–81. doi: https://doi.org/10.1093/brain/aws270. PubMedCrossRefGoogle Scholar
  180. 180.
    Ishida A, Isa K, Umeda T, Kobayashi K, Kobayashi K, Hida H et al. Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke. J Neurosci. 2016;36(2):455–67. doi: https://doi.org/10.1523/JNEUROSCI.2399-15.2016.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Stojic AS, Lane RD, Rhoades RW. Intracortical pathway involving dysgranular cortex conveys hindlimb inputs to S-I forelimb-stump representation of neonatally amputated rats. J Neurophysiol. 2001;85(1):407–13. doi: https://doi.org/10.1152/jn.2001.85.1.407.PubMedCrossRefGoogle Scholar
  182. 182.
    Paullus JR, Pappademos MS, Nolen AM, Warmus BA, Hickmott PW. Bidirectional axonal plasticity during reorganization of adult rat primary somatosensory cortex. Brain Res. 2011;1387:46–60. doi: https://doi.org/10.1016/j.brainres.2011.02.067.PubMedCrossRefGoogle Scholar
  183. 183.
    Florence SL, Taub HB, Kaas JH. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science. 1998;282(5391):1117–21.PubMedCrossRefGoogle Scholar
  184. 184.
    Bowlus TH, Lane, R.D., Stojic, A.S., Johnston, M., Pluto, C.P., Chan, M., Chiaia, N.L., Rhoades, R.W. Comparison of reorganization of the somatosensory system in rats that sustained forelimb removal as neonates and as adults. J Comp Neurol 2003 465(3):335–48.PubMedCrossRefGoogle Scholar
  185. 185.
    Pluto CP, Lane RD, Chiaia NL, Stojic AS, Rhoades RW. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats. J Neurophysiol. 2003;90(3):1842–51. doi: https://doi.org/10.1152/jn.00065.2003.PubMedCrossRefGoogle Scholar
  186. 186.
    Yamahachi H, Marik SA, McManus JN, Denk W, Gilbert CD. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron. 2009;64(5):719–29. doi: https://doi.org/10.1016/j.neuron.2009.11.026.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Marik SA, Yamahachi H, McManus JN, Szabo G, Gilbert CD. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol. 2010;8(6):e1000395. doi: https://doi.org/10.1371/journal.pbio.1000395.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Cheetham CE, Hammond MS, McFarlane R, Finnerty GT. Altered sensory experience induces targeted rewiring of local excitatory connections in mature neocortex. J Neurosci. 2008;28(37):9249–60. doi: https://doi.org/10.1523/JNEUROSCI.2974-08.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Nishimura Y, Isa T. Compensatory changes at the cerebral cortical level after spinal cord injury. Neuroscientist. 2009;15(5):436–44. doi: https://doi.org/10.1177/1073858408331375.PubMedCrossRefGoogle Scholar
  190. 190.
    Remple MS, Jain N, Diener PS, Kaas JH. Bilateral effects of spinal overhemisections on the development of the somatosensory system in rats. J Comp Neurol. 2004;475(4):604–19. doi: https://doi.org/10.1002/cne.20203.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Burke Neurological InstituteWhite PlainsUSA
  2. 2.Brain and Mind Research InstituteWeill Cornell MedicineNew YorkUSA

Personalised recommendations