Alterations in Gene and Protein Expression of Cannabinoid CB2 and GPR55 Receptors in the Dorsolateral Prefrontal Cortex of Suicide Victims

  • María S. García-Gutiérrez
  • Francisco Navarrete
  • Gemma Navarro
  • Irene Reyes-Resina
  • Rafael Franco
  • Jose Luis Lanciego
  • Salvador Giner
  • Jorge Manzanares
Original Article

Abstract

Recent studies point to the cannabinoid CB2 receptors (CB2r) and the non-cannabinoid receptor GPR55 as potential key targets involved in the response to stress, anxiety, and depression. Considering the close relationship between neuropsychiatric disorders and suicide, the purpose of this study was to evaluate the potential alterations of CB2r and GPR55 in suicide victims. We analyzed gene and protein expression of both receptors by real-time PCR and western blot, respectively, in the dorsolateral prefrontal cortex (DLPFC) of 18 suicide victims with no clinical psychiatric history or treatment with anxiolytics or antidepressants, and 15 corresponding controls. We used in situ proximity ligation assay to evaluate whether the receptors formed heteromeric complexes and to determine the expression level of these heteromers, also assessing the co-expression of heteromers in neurons, astroglia, or microglia cells. CB2r and GPR55 gene expressions were significantly lower (by 33 and 41%, respectively) in the DLPFC of suicide cases. CB2r protein expression was higher, as were CB2-GPR55 heteroreceptor complexes. The results also revealed the presence of CB2-GPR55 receptor heteromers in both neurons and astrocytes, whereas microglial cells showed no expression. We did not observe any significant alterations of GPR55 protein expression. Additional studies will be necessary to evaluate if these alterations are reproducible in suicide victims diagnosed with different psychiatric disorders. Taken together, the results suggest that CB2r and GPR55 may play a relevant role in the neurobiology of suicide.

Keywords

CB2GPR55 Suicide Dorsolateral prefrontal cortex Gene expression In situ proximity ligation assay 

Notes

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Furczyk K, Schutova B, Michel TM, Thome J, Buttner A. The neurobiology of suicide—a review of post-mortem studies. Journal of molecular psychiatry, 2013; 1(1), 2.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sokolowski M, Wasserman J, Wasserman D. An overview of the neurobiology of suicidal behaviors as one meta-system. Molecular psychiatry, 2015; 20(1), 56–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Turecki G. The molecular bases of the suicidal brain. Nature reviews, 2014; 15(12), 802–816.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci, 1991; 11(2), 563–583.PubMedGoogle Scholar
  5. 5.
    Steiner MA, Wanisch K, Monory K et al. Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. The pharmacogenomics journal, 2008; 8(3), 196–208.CrossRefPubMedGoogle Scholar
  6. 6.
    Uriguen L, Perez-Rial S, Ledent C, Palomo T, Manzanares J. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology, 2004; 46(7), 966–973.CrossRefPubMedGoogle Scholar
  7. 7.
    Cota D, Steiner MA, Marsicano G et al. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology, 2007; 148(4), 1574–1581.CrossRefPubMedGoogle Scholar
  8. 8.
    Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I et al. Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke, 2011;Google Scholar
  9. 9.
    Aso E, Ozaita A, Valdizan EM et al. BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem, 2008; 105(2), 565–572.CrossRefPubMedGoogle Scholar
  10. 10.
    Shearman LP, Rosko KM, Fleischer R et al. Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol, 2003; 14(8), 573–582.CrossRefPubMedGoogle Scholar
  11. 11.
    Tzavara ET, Davis RJ, Perry KW et al. The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol, 2003; 138(4), 544–553.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Witkin JM, Tzavara ET, Davis RJ, Li X, Nomikos GG. A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends in pharmacological sciences, 2005; 26(12), 609–617.CrossRefPubMedGoogle Scholar
  13. 13.
    Monteleone P, Bifulco M, Maina G et al. Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol Res, 2010; 61(5), 400–404.CrossRefPubMedGoogle Scholar
  14. 14.
    Mitjans M, Serretti A, Fabbri C et al. Screening genetic variability at the CNR1 gene in both major depression etiology and clinical response to citalopram treatment. Psychopharmacology (Berl), 2013; 227(3), 509–519.CrossRefGoogle Scholar
  15. 15.
    Bae JS, Kim JY, Park BL et al. Genetic association analysis of CNR1 and CNR2 polymorphisms with schizophrenia in a Korean population. Psychiatric genetics, 2014; 24(5), 225–229.PubMedGoogle Scholar
  16. 16.
    Barrero FJ, Ampuero I, Morales B et al. Depression in Parkinson’s disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). The pharmacogenomics journal, 2005; 5(2), 135–141.CrossRefPubMedGoogle Scholar
  17. 17.
    Erdozain AM, Rubio M, Valdizan EM et al. The endocannabinoid system is altered in the post-mortem prefrontal cortex of alcoholic subjects. Addict Biol, 2015; 20(4), 773–783.CrossRefPubMedGoogle Scholar
  18. 18.
    Hungund BL, Vinod KY, Kassir SA et al. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPgammaS binding in the prefrontal cortex of depressed suicide victims. Molecular psychiatry, 2004; 9(2), 184–190.CrossRefPubMedGoogle Scholar
  19. 19.
    Vinod KY, Arango V, Xie S et al. Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims. Biol Psychiatry, 2005; 57(5), 480–486.CrossRefPubMedGoogle Scholar
  20. 20.
    Uriguen L, Garcia-Fuster MJ, Callado LF et al. Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology (Berl), 2009; 206(2), 313–324.CrossRefGoogle Scholar
  21. 21.
    Garcia-Gutierrez MS, Perez-Ortiz JM, Gutierrez-Adan A, Manzanares J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. British journal of pharmacology, 2010; 160(7), 1773–1784.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Onaivi ES, Ishiguro H, Gong JP et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Annals of the New York Academy of Sciences, 2006; 1074, 514–536.CrossRefPubMedGoogle Scholar
  23. 23.
    Gong JP, Onaivi ES, Ishiguro H et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain research, 2006; 1071(1), 10–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Garcia-Gutierrez MS, Manzanares J. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J Psychopharmacol, 2011; 25(1), 111–120.CrossRefPubMedGoogle Scholar
  25. 25.
    Ortega-Alvaro A, Aracil-Fernandez A, Garcia-Gutierrez MS, Navarrete F, Manzanares J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology, 2011; 36(7), 1489–1504.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Onaivi ES, Ishiguro H, Gong JP et al. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS ONE, 2008; 3(2), e1640.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Garcia-Gutierrez MS, Garcia-Bueno B, Zoppi S, Leza JC, Manzanares J. Chronic blockade of cannabinoid CB(2) receptors induces anxiolytic-like actions associated to alterations in GABA(A) receptors. Br J Pharmacol, 2011;Google Scholar
  28. 28.
    Garcia-Gutierrez MS, Perez-Ortiz JM, Gutierrez-Adan A, Manzanares J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br J Pharmacol, 160(7), 1773–1784.Google Scholar
  29. 29.
    Ryberg E, Larsson N, Sjogren S et al. The orphan receptor GPR55 is a novel cannabinoid receptor. British journal of pharmacology, 2007; 152(7), 1092–1101.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sawzdargo M, Nguyen T, Lee DK et al. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain research. Molecular brain research, 1999; 64(2), 193–198.CrossRefPubMedGoogle Scholar
  31. 31.
    Pineiro R, Maffucci T, Falasca M. The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene, 2011; 30(2), 142–152.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang L, Ramirez JC, Frampton GA et al. Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor. Laboratory investigation; a journal of technical methods and pathology, 2011; 91(7), 1007–1017.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ford LA, Roelofs AJ, Anavi-Goffer S et al. A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. British journal of pharmacology, 2010; 160(3), 762–771.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Diaz-Arteaga A, Vazquez MJ, Vazquez-Martinez R et al. The atypical cannabinoid O-1602 stimulates food intake and adiposity in rats. Diabetes, obesity & metabolism, 2012; 14(3), 234–243.CrossRefGoogle Scholar
  35. 35.
    Moreno-Navarrete JM, Catalan V, Whyte L et al. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes, 2012; 61(2), 281–291.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Romero-Zerbo SY, Rafacho A, Diaz-Arteaga A et al. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. The Journal of endocrinology, 2011; 211(2), 177–185.CrossRefPubMedGoogle Scholar
  37. 37.
    Staton PC, Hatcher JP, Walker DJ et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain, 2008; 139(1), 225–236.CrossRefPubMedGoogle Scholar
  38. 38.
    Schuelert N, McDougall JJ. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55. Neuroscience letters, 2011; 500(1), 72–76.CrossRefPubMedGoogle Scholar
  39. 39.
    Marco EM, Echeverry-Alzate V, Lopez-Moreno JA, Gine E, Penasco S, Viveros MP. Consequences of early life stress on the expression of endocannabinoid-related genes in the rat brain. Behav Pharmacol, 2014; 25(5–6), 547–556.PubMedGoogle Scholar
  40. 40.
    Rahimi A, Hajizadeh Moghaddam A, Roohbakhsh A. Central administration of GPR55 receptor agonist and antagonist modulates anxiety-related behaviors in rats. Fundamental & clinical pharmacology, 2015; 29(2), 185–190.CrossRefGoogle Scholar
  41. 41.
    Sylantyev S JT, Ross RA, Rusakov, DA. The enigmatic receptor GPR55 potentiates neurotransmitter release at central synapses. Society for Neuroscience Conf Proc, Washington, 2011; Program 653.01, Poster B28Google Scholar
  42. 42.
    Jensen TP SS, Ross RA, Rusakov DA. GPR55 modulates transmitter release and short term plasticity in the hippocampus by initiating store mediated pre-synaptic Ca2+ entry. Soc for Neurosci Conf Proc, Washington, 2011; Program 448.08, Poster G4Google Scholar
  43. 43.
    Vermeulen J, De Preter K, Lefever S et al. Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic acids research, 2011; 39(9), e63.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Klempan TA, Ernst C, Deleva V, Labonte B, Turecki G. Characterization of QKI gene expression, genetics, and epigenetics in suicide victims with major depressive disorder. Biol Psychiatry, 2009; 66(9), 824–831.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu QR, Pan CH, Hishimoto A et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav, 2009; 8(5), 519–530.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif, 2001; 25(4), 402–408.Google Scholar
  47. 47.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 1951; 193(1), 265–275.PubMedGoogle Scholar
  48. 48.
    Trifilieff P, Rives ML, Urizar E et al. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. BioTechniques, 2011; 51(2), 111–118.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Borroto-Escuela DO, Tarakanov AO, Fuxe K. FGFR1-5-HT1A heteroreceptor complexes: implications for understanding and treating major depression. Trends in neurosciences, 2016; 39(1), 5–15.CrossRefPubMedGoogle Scholar
  50. 50.
    Fuxe K, Borroto-Escuela D, Fisone G, Agnati LF, Tanganelli S. Understanding the role of heteroreceptor complexes in the central nervous system. Current protein & peptide science, 2014; 15(7), 647.CrossRefGoogle Scholar
  51. 51.
    Garcia-Gutierrez MS, Ortega-Alvaro A, Busquets-Garcia A et al. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology, 2013; 73, 388–396.CrossRefPubMedGoogle Scholar
  52. 52.
    Li Y, Kim J. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus, 2016; 26(3), 275–281.CrossRefPubMedGoogle Scholar
  53. 53.
    Devinsky O, Cilio MR, Cross H et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia, 2014; 55(6), 791–802.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Blessing EM, Steenkamp MM, Manzanares J, Marmar CR. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 2015; 12(4), 825–836.CrossRefGoogle Scholar
  55. 55.
    Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimaraes FS. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2012; 367(1607), 3364–3378.CrossRefGoogle Scholar
  56. 56.
    Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. British journal of pharmacology, 2008; 153(2), 199–215.CrossRefPubMedGoogle Scholar
  57. 57.
    Jollant F, Bellivier F, Leboyer M et al. Impaired decision making in suicide attempters. Am J Psychiatry, 2005; 162(2), 304–310.CrossRefPubMedGoogle Scholar
  58. 58.
    van Heeringen C, Audenaert K, Van Laere K et al. Prefrontal 5-HT2a receptor binding index, hopelessness and personality characteristics in attempted suicide. J Affect Disord, 2003; 74(2), 149–158.CrossRefPubMedGoogle Scholar
  59. 59.
    Turecki G. Dissecting the suicide phenotype: the role of impulsive-aggressive behaviours. J Psychiatry Neurosci, 2005; 30(6), 398–408.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Mann JJ, Waternaux C, Haas GL, Malone KM. Toward a clinical model of suicidal behavior in psychiatric patients. Am J Psychiatry, 1999; 156(2), 181–189.PubMedGoogle Scholar
  61. 61.
    Soderberg O, Leuchowius KJ, Gullberg M et al. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods (San Diego, Calif, 2008; 45(3), 227–232.Google Scholar
  62. 62.
    Sierra S, Luquin N, Rico AJ et al. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain structure & function, 2015; 220(5), 2721–2738.CrossRefGoogle Scholar
  63. 63.
    Martinez-Pinilla E, Reyes-Resina I, Onatibia-Astibia A et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol, 2014; 261, 44–52.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  • María S. García-Gutiérrez
    • 1
    • 2
  • Francisco Navarrete
    • 1
    • 2
  • Gemma Navarro
    • 3
    • 4
  • Irene Reyes-Resina
    • 3
    • 4
  • Rafael Franco
    • 3
    • 4
  • Jose Luis Lanciego
    • 4
    • 5
  • Salvador Giner
    • 6
  • Jorge Manzanares
    • 1
    • 2
  1. 1.Instituto de Neurociencias de AlicanteUniversidad Miguel Hernandez—CSICAlicanteSpain
  2. 2.Red Nacional de Trastornos AdictivosInstituto de Salud Carlos III, Ministerio de Economía y Competitividad y Fondo de Desarrollo Regional EuropeoMadridSpain
  3. 3.Departamento de Bioquímica y Biología Molecular, Facultad de BiologíaUniversidad de BarcelonaBarcelonaSpain
  4. 4.Centro de Investigación Biológica en Red para enfermedades neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain
  5. 5.Departamento de Neurociencias, Centro de Investigación Médica Aplicada (CIMA)Universidad de NavarraPamplonaSpain
  6. 6.Instituto de Medicina LegalAlicanteSpain

Personalised recommendations