, Volume 14, Issue 4, pp 1107–1119 | Cite as

A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing α-Synuclein

  • Franziska Richter
  • Sudhakar R. Subramaniam
  • Iddo Magen
  • Patrick Lee
  • Jane Hayes
  • Aida Attar
  • Chunni Zhu
  • Nicholas R. Franich
  • Nicholas Bove
  • Krystal De La Rosa
  • Jacky Kwong
  • Frank-Gerrit Klärner
  • Thomas Schrader
  • Marie-Françoise Chesselet
  • Gal Bitan
Original Article


Aberrant accumulation and self-assembly of α-synuclein are tightly linked to several neurodegenerative diseases called synucleinopathies, including idiopathic Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Deposition of fibrillar α-synuclein as insoluble inclusions in affected brain cells is a pathological hallmark of synucleinopathies. However, water-soluble α-synuclein oligomers may be the actual culprits causing neuronal dysfunction and degeneration in synucleinopathies. Accordingly, therapeutic approaches targeting the toxic α-synuclein assemblies are attractive for these incurable disorders. The “molecular tweezer” CLR01 selectively remodels abnormal protein self-assembly through reversible binding to Lys residues. Here, we treated young male mice overexpressing human wild-type α-synuclein under control of the Thy-1 promoter (Thy1-aSyn mice) with CLR01 and examined motor behavior and α-synuclein in the brain. Intracerebroventricular administration of CLR01 for 28 days to the mice improved motor dysfunction in the challenging beam test and caused a significant decrease of buffer-soluble α-synuclein in the striatum. Proteinase-K-resistant, insoluble α-synuclein deposits remained unchanged in the substantia nigra, whereas levels of diffuse cytoplasmic α-synuclein in dopaminergic neurons increased in mice receiving CLR01 compared with vehicle. More moderate improvement of motor deficits was also achieved by subcutaneous administration of CLR01, in 2/5 trials of the challenging beam test and in the pole test, which requires balance and coordination. The data support further development of molecular tweezers as therapeutic agents for synucleinopathies.

Key Words

Parkinson’s disease synucleinopathies mouse model motor behavior α-synuclein aggregation drug testing 



This work was supported by National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) P50 grant NS38367 [University of California, Los Angeles (UCLA), Morris K. Udall Parkinson Disease Research Center of Excellence], including a Blueprint supplement to this award, NIH/National Institute of Environmental Health Sciences P01 grant ES016732, RJG Foundation grant 20095024, the Michael J. Fox Foundation, Team Parkinson/Parkinson Alliance, The American Parkinson’s Disease Association, and gifts to the Center for the Study of Parkinson’s Disease at UCLA.

Required Author Forms Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_544_Fig6_ESM.gif (27 kb)
Fig. S1

Continuous weight gain under CLR01 intracerebroventricular (ICV) treatment. Body weight (g) after 28 days of ICV infusion with vehicle or CLR01 at 1 μM or 10 μM (n = 12–18/group). Mean ± SEM (GIF 26 kb)

13311_2017_544_MOESM1_ESM.tif (724 kb)
High resolution image (TIF 724 kb)
13311_2017_544_Fig7_ESM.gif (47 kb)
Fig. S2

CLR01 intracerebroventricular (ICV) treatment does not affect performance in the pole test. Pole test (time to turn, mean + SEM) in Thy1-aSyn and wild-type (WT) mice administered vehicle (n = 18 WT, n = 14 Thy1-aSyn) or CLR01 at 1 μM (n = 17 WT, n = 13 Thy1-aSyn) or 10 μM (n = 17 WT, n = 12 Thy1-aSyn) (a) preadministration and (b) postadministration; **p < 0.01 vs the corresponding WT mice, no significant differences between treatment groups in each genotype, or between pre -and postadministration (Mann–Whitney U test) (GIF 46 kb)

13311_2017_544_MOESM2_ESM.tif (1.1 mb)
High resolution image (TIF 1152 kb)
13311_2017_544_Fig8_ESM.gif (93 kb)
Fig. S3

CLR01 intracerebroventricular (ICV) treatment does not affect proteinase-K-resistant α-synuclein aggregates. Number of (a, b) aggregates (n/area, area in μm2 × 100) and (c, d) percent surface area (% of area in μm2) occupied by these aggregates in the (a, c) left and (b, d) right substantia nigra in Thy1-aSyn mice treated with vehicle (saline, n = 7) or CLR01 at 1 μM or 10 μM intracerebroventricularly (n = 6 each); mean + SEM, 1-way ANOVA for each measure revealed no differences (GIF 92 kb)

13311_2017_544_MOESM3_ESM.tif (4.5 mb)
High resolution image (TIF 4571 kb)
13311_2017_544_Fig9_ESM.gif (72 kb)
Fig. S4

CLR01 does not affect the α-synuclein oligomer-size distribution in the striatum. (a) Native polyacrylamide gel electrophoresis (PAGE)/Western blot analysis using an anti-α-synuclein antibody shows bands corresponding to a monomer, a small oligomer with an apparent mobility between dimer and trimer, and a high-molecular-weight (HMW) smear. The individual lanes shown for the vehicle- and CLR01-treated mice represent individual animals. Recombinant α-synuclein cross-linked using photo-induced cross-linking of unmodified proteins [47] is shown as a reference. (b, c) Densitometric analysis (mean + SEM) of the 3 bands observed in the native PAGE/Western blots of the buffer-soluble fraction extracted from the (b) substania nigra and (c) striatum of Thy1-aSyn mice (n = 6 each). GAPDH = glyceraldehyde 3-phosphate dehydrogenase (GIF 71 kb)

13311_2017_544_MOESM4_ESM.tif (1.8 mb)
High resolution image (TIF 1821 kb)
13311_2017_544_Fig10_ESM.gif (61 kb)
Fig. S5

CLR01 subcutaneous treatment does not affect performance in the cylinder test. Mean + SEM of forelimb steps and hindlimb steps over 3 min in the cylinder test in Thy1-aSyn mice vs the respective wild-type mice, **p < 0.01, 2-way analysis of variance, Bonferroni t test (n = 16 for each group) (GIF 60 kb)

13311_2017_544_MOESM5_ESM.tif (1.3 mb)
High resolution image (TIF 1315 kb)
13311_2017_544_MOESM6_ESM.pdf (463 kb)
ESM 1 (PDF 462 kb)
13311_2017_544_MOESM7_ESM.pdf (467 kb)
ESM 2 (PDF 467 kb)


  1. 1.
    Spillantini MG, Goedert M. The α-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci 2000;920:16-27.CrossRefPubMedGoogle Scholar
  2. 2.
    Vekrellis K, Stefanis L. Targeting intracellular and extracellular α-synuclein as a therapeutic strategy in Parkinson's disease and other synucleinopathies. Expert opinion on therapeutic targets 2012;16(4):421-432.CrossRefPubMedGoogle Scholar
  3. 3.
    Trojanowski JQ, Lee VM. Parkinson's disease and related α-synucleinopathies are brain amyloidoses. Ann N Y Acad Sci 2003;991:107-110.CrossRefPubMedGoogle Scholar
  4. 4.
    Devine MJ, Gwinn K, Singleton A, Hardy J. Parkinson's disease and α-synuclein expression. Mov Disord 2011;26(12):2160-2168.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Simon-Sanchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 2009;41(12):1308-1312.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 2009;41(12):1303-1307.CrossRefPubMedGoogle Scholar
  7. 7.
    Edwards TL, Scott WK, Almonte C, et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 2010;74(2):97-109.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu J, Xiao Q, Wang Y, et al. Analysis of genome-wide association study-linked loci in Parkinson's disease of Mainland China. Mov Disord 2013;28(13):1892-1895.CrossRefPubMedGoogle Scholar
  9. 9.
    Hatami A, Chesselet MF. Transgenic rodent models to study α-synuclein pathogenesis, with a focus on cognitive deficits. Curr Top Behav Neurosci 2015;22:303-330.CrossRefPubMedGoogle Scholar
  10. 10.
    Mizuno H, Fujikake N, Wada K, Nagai Y. α-Synuclein transgenic Drosophila as a model of Parkinson's disease and related synucleinopathies. Parkinsons Dis 2010;2011:212706.Google Scholar
  11. 11.
    Fellner L, Wenning GK, Stefanova N. Models of multiple system atrophy. Curr Top Behav Neurosci 2015;22:369-393.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chesselet MF, Richter F. Modelling of Parkinson's disease in mice. Lancet Neurol 2011;10(12):1108-1118.CrossRefPubMedGoogle Scholar
  13. 13.
    Lulla A, Barnhill L, Bitan G, et al. Neurotoxicity of the Parkinson's disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ Health Perspect 2016;124:1766-1775.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xilouri M, Brekk OR, Stefanis L. Autophagy and α-synuclein: relevance to Parkinson's disease and related synucleopathies. Mov Disord 2016;31(2):178-192.CrossRefPubMedGoogle Scholar
  15. 15.
    Subramaniam SR, Vergnes L, Franich NR, Reue K, Chesselet MF. Region specific mitochondrial impairment in mice with widespread overexpression of α-synuclein. Neurobiol Dis 2014;70:204-213.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Breydo L, Wu JW, Uversky VN. α-Synuclein misfolding and Parkinson's disease. Biochim Biophys Acta 2012;1822(2):261-285.CrossRefPubMedGoogle Scholar
  17. 17.
    Amer DA, Irvine GB, El-Agnaf OM. Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson's disease and related disorders. Exp Brain Res 2006;173(2):223-233.CrossRefPubMedGoogle Scholar
  18. 18.
    Sinha S, Lopes DH, Du Z, et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J Am Chem Soc 2011;133(42):16958-16969.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Attar A, Bitan G. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers"—from the test tube to animal models. Curr Pharm Des 2014;20(15):2469-2483.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schrader T, Bitan G, Klarner FG. Molecular tweezers for lysine and arginine - powerful inhibitors of pathologic protein aggregation. Chem Commun (Camb) 2016;52(76):11318-11334.CrossRefGoogle Scholar
  21. 21.
    Talbiersky P, Bastkowski F, Klarner FG, Schrader T. Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J Am Chem Soc 2008;130(30):9824-9828.CrossRefPubMedGoogle Scholar
  22. 22.
    Acharya S, Safaie BM, Wongkongkathep P, et al. Molecular basis for preventing α-synuclein aggregation by a molecular tweezer. J Biol Chem 2014;289(15):10727-10737.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bier D, Rose R, Bravo-Rodriguez K, et al. Molecular tweezers modulate 14-3-3 protein-protein interactions. Nat Chem 2013;5(3):234-239.CrossRefPubMedGoogle Scholar
  24. 24.
    Klärner FG, Schrader T. Aromatic interactions by molecular tweezers and clips in chemical and biological systems. Acc Chem Res 2013;46(4):967-978.CrossRefPubMedGoogle Scholar
  25. 25.
    Attar A, Chan WT, Klärner FG, Schrader T, Bitan G. Safety and pharmacological characterization of the molecular tweezer CLR01—a broad-spectrum inhibitor of amyloid proteins' toxicity. BMC Pharmacol Toxicol 2014;15(1):23.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Prabhudesai S, Sinha S, Attar A, et al. A novel "molecular tweezer" inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics 2012;9(2):464-476.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fogerson SM, van Brummen AJ, Busch DJ, et al. Reducing synuclein accumulation improves neuronal survival after spinal cord injury. Exp Neurol 2016;278:105-115.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Busch DJ, Morgan JR. Synuclein accumulation is associated with cell-specific neuronal death after spinal cord injury. J Comp Neurol 2012;520(8):1751-1771.CrossRefPubMedGoogle Scholar
  29. 29.
    Attar A, Ripoli C, Riccardi E, et al. Protection of primary neurons and mouse brain from Alzheimer's pathology by molecular tweezers. Brain 2012;135(Pt 12):3735-3748.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ferreira N, Pereira-Henriques A, Attar A, et al. Molecular tweezers targeting transthyretin amyloidosis. Neurotherapeutics 2014;11(2):450-461.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rockenstein E, Mallory M, Hashimoto M, et al. Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002;68(5):568-578.CrossRefPubMedGoogle Scholar
  32. 32.
    Chesselet MF, Richter F, Zhu C, et al. A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics 2012;9(2):297-314.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Magen I, Torres ER, Dinh D, et al. Social cognition impairments in mice overexpressing α-synuclein under the Thy1 promoter, a model of pre-manifest Parkinson's disease. J Parkinsons Dis 2015;5(3):669-680.CrossRefPubMedGoogle Scholar
  34. 34.
    McDowell KA, Shin D, Roos KP, Chesselet MF. Sleep dysfunction and EEG alterations in mice overexpressing α-synuclein. J Parkinsons Dis 2014;4(3):531-539.PubMedGoogle Scholar
  35. 35.
    Grant LM, Richter F, Miller JE, et al. Vocalization deficits in mice over-expressing α-synuclein, a model of pre-manifest Parkinson's disease. Behav Neurosci 2014;128(2):110-121.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Watson MB, Richter F, Lee SK, et al. Regionally-specific microglial activation in young mice over-expressing human wildtype α-synuclein. Exp Neurol 2012;237(2):318-334.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang L, Magen I, Yuan PQ, et al. Mice overexpressing wild-type human α-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol Motil 2012;24(9):e425-e436.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Magen I, Fleming SM, Zhu C, et al. Cognitive deficits in a mouse model of pre-manifest Parkinson's disease. Eur J Neurosci 2012;35(6):870-882.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lam HA, Wu N, Cely I, et al. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α-synuclein. J Neurosci Res 2011;89(7):1091-1102.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. San Diego: Academic Press; 2001.Google Scholar
  41. 41.
    Fleming SM, Salcedo J, Fernagut PO et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci 2004;24(42):9434-9440.CrossRefPubMedGoogle Scholar
  42. 42.
    Richter F, Fleming SM, Watson M, et al. A GCase chaperone improves motor function in a mouse model of synucleinopathy. Neurotherapeutics 2014;11(4):840-856.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fleming SM, Mulligan CK, Richter F, et al. A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing α-synuclein shows improvement in motor function and reduction of α-synuclein inclusions. Mol Cell Neurosci 2011;46(3):597-606.CrossRefPubMedGoogle Scholar
  44. 44.
    Magen I, Ostritsky R, Richter F, et al. Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein. Pharmacol Res Perspect 2014;2:e00065.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shankar GM, Li S, Mehta TH, et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008;14(8):837-842.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Intl 2004;11(7):36-42.Google Scholar
  47. 47.
    Lopes DH, Sinha S, Rosensweig C, Bitan G. Application of photochemical cross-linking to the study of oligomerization of amyloidogenic proteins. Methods Mol Biol 2012;849:11-21.CrossRefPubMedGoogle Scholar
  48. 48.
    Richter F, Gao F, Medvedeva V, et al. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by α-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014;69:263-275.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fernagut PO, Hutson CB, Fleming SM, et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of α-synuclein over-expression. Synapse 2007;61(12):991-1001.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Efron B, Tibshirani R. Statistical data analysis in the computer age. Science 1991;253(5018):390-395.CrossRefPubMedGoogle Scholar
  51. 51.
    Rabl R, Breitschaedel C, Flunkert S, et al. Early start of progressive motor deficits in Line 61 α-synuclein transgenic mice. BMC Neurosci 2017;18(1):22.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Friden M, Ljungqvist H, Middleton B, Bredberg U, Hammarlund-Udenaes M. Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J Cereb Blood Flow Metab 2010;30(1):150-161.CrossRefPubMedGoogle Scholar
  53. 53.
    Dagenais C, Rousselle C, Pollack GM, Scherrmann JM. Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab 2000;20(2):381-386.CrossRefPubMedGoogle Scholar
  54. 54.
    Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 2003;39(3):409-421.CrossRefPubMedGoogle Scholar
  55. 55.
    Franich NR, Mallajosyula JK, Richter F, et al. Reducing α-synuclein after deficit onset improves behavioral deficits and pathology in over-expressing mice. Neurosci Abstr 2013;622.26/I18.Google Scholar
  56. 56.
    Levine MS, Cepeda C, Hickey MA, Fleming SM, Chesselet MF. Genetic mouse models of Huntington's and Parkinson's diseases: illuminating but imperfect. Trends Neurosci 2004;27(11):691-697.CrossRefPubMedGoogle Scholar
  57. 57.
    Hickey MA, Zhu C, Medvedeva V, et al. Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington's disease. Mol Cell Neurosci 2012;49(2):149-157.CrossRefPubMedGoogle Scholar
  58. 58.
    Rockenstein E, Nuber S, Overk CR, et al. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain 2014;137(Pt 5):1496-1513.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rahimi F, Bitan G. The structure and function of fibrillar and oligomeric assemblies of amyloidogenic proteins. In: Rahimi F, Bitan G, Eds. Non-fibrillar amyloidogenic protein assemblies—common cytotoxins underlying degenerative diseases. Dordrecht: Springer Science + Media B.V.; 2012. p. 1-36.CrossRefGoogle Scholar
  60. 60.
    Bitan G, Fradinger EA, Spring SM, Teplow DB. Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 2005;12(2):88-95.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Franziska Richter
    • 1
  • Sudhakar R. Subramaniam
    • 1
  • Iddo Magen
    • 1
  • Patrick Lee
    • 1
  • Jane Hayes
    • 1
  • Aida Attar
    • 1
    • 2
  • Chunni Zhu
    • 1
  • Nicholas R. Franich
    • 1
  • Nicholas Bove
    • 1
  • Krystal De La Rosa
    • 1
  • Jacky Kwong
    • 1
  • Frank-Gerrit Klärner
    • 3
  • Thomas Schrader
    • 3
  • Marie-Françoise Chesselet
    • 1
    • 2
    • 4
    • 5
  • Gal Bitan
    • 1
    • 2
    • 5
  1. 1.Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Brain Research InstituteUniversity of California, Los AngelesLos AngelesUSA
  3. 3.Institute of Organic ChemistryUniversity of Duisburg-EssenEssenGermany
  4. 4.Department of Neurobiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  5. 5.Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations