Neurotherapeutics

, Volume 14, Issue 2, pp 385–392 | Cite as

Therapeutic Hypothesis Testing With Rodent Brain Tumor Models

  • Derek A. Wainwright
  • Craig M. Horbinski
  • Rintaro Hashizume
  • C. David James
Review

Abstract

The development and application of rodent models for preclinical testing of novel therapeutics and approaches for treating brain tumors has been a mainstay of neuro-oncology preclinical research for decades, and is likely to remain so into the foreseeable future. These models serve as an important point of entry for analyzing the potential efficacy of experimental therapies that are being considered for clinical trial evaluation. Although rodent brain tumor models have seen substantial change, particularly since the introduction of genetically engineered mouse models, certain principles associated with the use of these models for therapeutic testing are enduring, and form the basis for this review. Here we discuss the most common rodent brain tumor models while directing specific attention to their usefulness in preclinical evaluation of experimental therapies. These models include genetically engineered mice that spontaneously or inducibly develop brain tumors; syngeneic rodent models in which cultured tumor cells are engrafted into the same strain of rodent from which they were derived; and patient-derived xenograft models in which human tumor cells are engrafted in immunocompromised rodents. The emphasis of this review is directed to the latter.

Keywords

Xenograft Syngeneic Immunocompetent vs. immunocompromised Spontaneous vs. engraftment 

Supplementary material

13311_2017_523_MOESM1_ESM.pdf (499 kb)
ESM 1(PDF 499 kb)

References

  1. 1.
    Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215-221.Google Scholar
  2. 2.
    Ding H, Roncari L, Shannon P, et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001;61:3826-3836.PubMedGoogle Scholar
  3. 3.
    Gutmann DH, Stiles CD, Lowe SW, Bollag GE, Furnari FB, Charest AL. Report from the fifth National Cancer Institute Mouse Models of Human Cancers Consortium Nervous System Tumors Workshop. Neuro Oncol 2011;13:692-699.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhu Y, Guignard F, Zhao D, et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005;8:119-130.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-1068.CrossRefGoogle Scholar
  6. 6.
    Kwon CH, Zhao D, Chen J, et al. PTEN haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 2008;68:3286-3294.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen L, Zhang Y, Yang J, Hagan JP, Li M. Vertebrate animal models of glioma: understanding the mechanisms and developing new therapies. Biochim Biophys Acta 2013;1836:158-165.Google Scholar
  8. 8.
    Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 2006;66:3355-3358.CrossRefPubMedGoogle Scholar
  9. 9.
    Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 2009;94:299-312.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Oh T, Fakurnejad S, Sayegh ET, et al. Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 2014;12:107.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20:5290-5301.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Belcaid Z, Phallen JA, Zeng J, et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLOS ONE 2014;9:e101764.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007;13:2158-2167.CrossRefPubMedGoogle Scholar
  14. 14.
    Bigner SH, Bullard DE, Pegram CN, Wikstrand CJ, Bigner DD. Relationship of in vitro morphologic and growth characteristics of established human glioma-derived cell lines to their tumorigenicity in athymic nude mice. J Neuropathol Exp Neurol 1981;40:390-409.CrossRefPubMedGoogle Scholar
  15. 15.
    Ishii N, Maier D, Merlo A, et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 1999;9:469-479.CrossRefPubMedGoogle Scholar
  16. 16.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 204;432:396-401.Google Scholar
  17. 17.
    Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-760.CrossRefPubMedGoogle Scholar
  18. 18.
    Li A, Walling J, Kotliarov Y, et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 2008;6: 21-30.CrossRefPubMedGoogle Scholar
  19. 19.
    Giannini C, Sarkaria JN, Saito A, et al. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 2005;7:164-176.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pollard SM, Yoshikawa K, Clarke ID, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 2009;4:568-580.CrossRefPubMedGoogle Scholar
  21. 21.
    Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004;40:827-836.CrossRefPubMedGoogle Scholar
  22. 22.
    Bigner SH, Friedman HS, Vogelstein B, Oakes WJ, Bigner DD. Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts. Cancer Res 1990;50:2347-2350PubMedGoogle Scholar
  23. 23.
    Massimino M, Biassoni V, Gandola L, et al. Childhood medulloblastoma. Critical Rev Oncol Hematol 2016;105:35-51.CrossRefGoogle Scholar
  24. 24.
    Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98-110.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014;2014:694-708.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Bondarenko G, Ugolkov A, Rohan S, et al. Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia 2015;17:735-41.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Klink B, Miletic H, Stieber D, et al. A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1. PLOS One 2013;8:e59773.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Luchman HA, Stechishin OD, Dang NH, et al. An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro Oncol 2012;14:184-191.CrossRefPubMedGoogle Scholar
  29. 29.
    Nowosielska EM, Cheda A, Wrembel-Wargocka J, Janiak MK. Effect of low doses of low-let radiation on the innate anti-tumor reactions in radioresistant and radiosensitive mice. Dose Resp 2012;10:500-515.CrossRefGoogle Scholar
  30. 30.
    Joo KM, Kim J, Jin J, et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep 2013;3:260-273.CrossRefPubMedGoogle Scholar
  31. 31.
    Carlson BL, Pokorny JL, Schroeder MA, Sarkaria JN. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protoc Pharmacol 2011;Chapter 14:Unit 14. 16.Google Scholar
  32. 32.
    Hodgson JG, Yeh R-F, Ray A, et al. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts. Neuro Oncol 2009;11:477-487.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Atunes L, Angioi-Duprez KS, Bracard SR, et al. Analysis of tissue chimerism in nude mouse brain and abdominal xenograft models of human glioblastoma multiforme: what does it tell us about the models and about glioblastoma biology and therapy? J Histochem Cytochem 2000;48:847-858.CrossRefGoogle Scholar
  34. 34.
    Wang J, Miletic H, Sakariassen PO, et al. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 2009;9:465.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Garralda E, Paz K, Lopez-Casas PP, et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res 2014;20:2476-2484.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Behrens D, Rolff J, Hoffmann J. Predictive in vivo models for oncology. Handb Exp Pharmacol 2016;232:203-221.CrossRefPubMedGoogle Scholar
  37. 37.
    Burgenske DM, Monsma DJ, Dylewski D, et al. Establishment of genetically diverse patient-derived xenografts of colorectal cancer. Am J Cancer Res 2014;4:824-837.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Mark J, Ponten J, Westermark B. Cytogentical studies with G-band technique of established cell lines of human malignant glomas. Hereditas 1974;78:304-307CrossRefPubMedGoogle Scholar
  39. 39.
    Sarkaria JN, Carlson BL, Schroeder MA, et al. Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res 2006;12:2264-2271.CrossRefPubMedGoogle Scholar
  40. 40.
    He XM, Skapek SX, Wikstrand CJ, et al. Phenotypic analysis of four human medulloblastoma cell lines and transplantable xenografts. J Neuropathol Exp Neurol 1989;48:48-68.CrossRefPubMedGoogle Scholar
  41. 41.
    Sterling-Levis K, White L. The role of xenografting in pediatric brain tumor research with specific emphasis on medulloblastoma/primitive neuroectodermal tumors of childhood. In Vivo 2003;17:329-342.PubMedGoogle Scholar
  42. 42.
    Hashizume R, Andor N, Ihara Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014;20:1394-1396.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Piunti A, Hashizume R, Morgan MA, et al. Heterotypic nucleosomes and PRC2 drive DIPG oncogenesis. Nat Med 2017 Feb 27.Google Scholar
  44. 44.
    Nicolaides TP, Li H, Solomon DA, et al. Targeted therapy for BRAFV600E malignant astrocytoma. Clin Cancer Res 2011;17:7595-7604.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schindler G, Capper D, Meyer J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121:397-405.CrossRefPubMedGoogle Scholar
  46. 46.
    Fathi AR, Roelcke U. Meningioma. Curr Neurol Neurosci Rep 2013;13:337.CrossRefPubMedGoogle Scholar
  47. 47.
    Ragel BT, Couldwell WT, Gillespie DL, Wendland MM, Whang K, Jensen RL. A comparison of the cell lines used in meningioma research. Surg Neurol 2008;70:295-307.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee WH. Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery 1990;27:389-395.CrossRefPubMedGoogle Scholar
  49. 49.
    Boström J, Meyer-Puttlitz B, Wolter M, et al. Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 2001;159:661-669.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Takei H, Rouah E, Ishida Y. Brain metastasis: clinical characteristics, pathological findings and molecular subtyping for therapeutic implications. Brain Tumor Pathol 2016;33:1-12.CrossRefPubMedGoogle Scholar
  51. 51.
    Aryee KE, Shultz LD, Brehm MA. Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development. Methods Mol Biol 2014;1185:267-278.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hasgur S, Aryee KE, Shultz LD, Greiner DL, Brehm MA. Generation of immunodeficient mice bearing human immune systems by the engraftment of hematopoietic stem cells. Methods Mol Biol 2016;1438: 67-78.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang Y, Tseng JC, Sun Y, Beck AH, Kung AL. Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer. Cold Spring Harb Protoc 2015;2015:135-144.PubMedGoogle Scholar
  54. 54.
    Dinca EB, Sarkaria JN, Schroeder MA, et al. Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 2007;107:610-616.CrossRefPubMedGoogle Scholar
  55. 55.
    Szentirmai O, Baker CH, Lin N, et al. Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 2006;58:365-372.CrossRefPubMedGoogle Scholar
  56. 56.
    Evans MS, Chaurette JP, Adams ST Jr, et al. A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 2014;11:393-395.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kuchimaru T, Iwano S, Kiyama M, et al. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun 2016;7:11856.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Department of Neurological SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of Microbiology and ImmunologyNorthwestern University Feinberg School of MedicineChicagoUSA
  3. 3.Department of Medicine-Hematology/OncologyNorthwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations