, Volume 14, Issue 2, pp 284–297 | Cite as

Glioma Subclassifications and Their Clinical Significance

  • Ricky Chen
  • Matthew Smith-Cohn
  • Adam L. Cohen
  • Howard Colman


The impact of targeted therapies in glioma has been modest. All the therapies that have demonstrated a significant survival benefit for gliomas in Phase III trials, including radiation, chemotherapy (temozolomide and PCV [procarbazine, lomustine, vincristine]), and tumor-treating fields, are based on nonspecific targeting of proliferating cells. Recent advances in the molecular understanding of gliomas suggest some potential reasons for the failure of more targeted therapies in gliomas. Specifically, the histologic-based glioma classification is composed of multiple different molecular subtypes with distinct biology, natural history, and prognosis. As a result of these insights, the diagnosis and classification of gliomas have recently been updated by the World Health Organization. However, these changes and other novel observations regarding glioma biomarkers and subtypes highlight several clinical challenges. First, the field is faced with the difficulty of reinterpreting the results of prior studies and retrospective data using the new classifications to clarify prognostic assessments and treatment recommendations for patients. Second, the new classifications and insights require rethinking the design and stratification of future clinical trials. Last, these observations provide the essential framework for the development and testing of new specific targeted therapies for particular glioma subtypes. This review aims to summarize the current literature regarding glioma subclassifications and their clinical relevance in this evolving field.


Glioma Ependymoma Targeted therapy IDH mutation MGMT methylation TERT promoter EGFR BRAF 1p/19q co-deletion 2HG MR spectroscopy Vaccine therapy 

Supplementary material

13311_2017_519_MOESM1_ESM.pdf (1.2 mb)
ESM 1 Required Author Forms Disclosure forms provided by the authors are available with the online version of this article. (PDF 1225 kb)


  1. 1.
    Modrek AS, Bayin NS, Placantonakis DG. Brain stem cells as the cell of origin in glioma. World J Stem Cells 2014;6:43–52.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:547–547.PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cahill DP, Sloan AE, Nahed BV, et al. The role of neuropathology in the management of patients with diffuse low grade glioma. J Neurooncol 2015;125:531–549.PubMedCrossRefGoogle Scholar
  4. 4.
    Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer 1997;79:1381–1393.PubMedCrossRefGoogle Scholar
  5. 5.
    Perry A, Wesseling P. Histologic classification of gliomas. 1st ed. Elsevier B.V; 2016.Google Scholar
  6. 6.
    Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Stevens MFG, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 2012;5:102–114.PubMedCrossRefGoogle Scholar
  8. 8.
    Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000;343:1350–1354.PubMedCrossRefGoogle Scholar
  9. 9.
    Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10:459–466.PubMedCrossRefGoogle Scholar
  10. 10.
    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–820.PubMedCrossRefGoogle Scholar
  11. 11.
    Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998;90:1473–1479.PubMedCrossRefGoogle Scholar
  12. 12.
    Yan H, Friedman A, Reardon D, Herndon J. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765–773.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    The Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015;372:2481–2498.PubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012;18:5562–5571.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Thompson CB. Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med 2009;360:813–815.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012;483:479–483.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012;483:474–478.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sun H, Yin L, Li S, et al. Prognostic significance of IDH mutation in adult low-grade gliomas: a meta-analysis. J Neurooncol 2013;113:277–284.PubMedCrossRefGoogle Scholar
  19. 19.
    Wick W, Hartmann C, Engel C, et al. NOA-04 Randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009;27:5874–5880.PubMedCrossRefGoogle Scholar
  20. 20.
    Dunn GP, Andronesi OC, Cahill DP. From genomics to the clinic: biological and translational insights of mutant IDH 1/2 in glioma. Neurosurg Focus 2013;34:1–15.CrossRefGoogle Scholar
  21. 21.
    Suzuki H, Aoki K, Chiba K, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 2015;47:458–468.PubMedCrossRefGoogle Scholar
  22. 22.
    Wakimoto H, Tanaka S, Curry WT, et al. Targetable Signaling Pathway Mutations Are Associated with Malignant Phenotype in IDH-mutant gliomas. Clin Cancer Res 2014;20:2898–2909.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cohen A, Sato M, Aldape K, et al. DNA copy number analysis of Grade II–III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status. Acta Neuropathol Commun 2015;3:34.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Oizel K, Gratas C, Nadaradjane A, Oliver L, Vallette FM, Pecqueur C. D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide- triggered apoptosis mediated by an alteration in mitochondrial NADH. Cell Death Dis 2015;6:e1704–e1710.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006;66:9852–9861.PubMedCrossRefGoogle Scholar
  26. 26.
    Vogazianou AP, Chan R, Backlund LM, et al. Distinct patterns of 1p and 19q alterations identify subtypes of human gliomas that have different prognoses. Neuro Oncol 2010;12:664–678.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013;31:337–343.PubMedCrossRefGoogle Scholar
  28. 28.
    van den Bent MJ, Brandes AA, Taphoorn MJB, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group study 26951. J Clin Oncol 2013;31:344–350.PubMedCrossRefGoogle Scholar
  29. 29.
    Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell 2013;155:462–477.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015;372:2499–2508.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Arita H, Yamasaki K, Matsushita Y, et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 2016;4:1–14.CrossRefGoogle Scholar
  32. 32.
    Nguyen HN, Lie A, Li T, et al. Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro Oncol 2017;19:394–404.Google Scholar
  33. 33.
    Schwartzentruber J, Korshunov A, Liu X-Y, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012;482:226–231.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu G, Broniscer A, McEachron TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012;44:251–253.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sturm D, Witt H, Hovestadt V, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012;22:425–437.PubMedCrossRefGoogle Scholar
  36. 36.
    Khuong-Quang D-A, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012;124:439–447.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hou Y, Kohanbash G, Okada K, et al. Novel and shared neoantigen for glioma T cell therapy derived from histone 3 variant H3.3 K27M mutation. J Immunother Cancer 2015;3:P445.PubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kohanbash G, Okada K, Liu S, et al. HG-81 novel and shared neoantigen for glioma T cell therapy derived from histone 3 variant H3.3 K27M mutation. Neuro Oncol 2016;18:iii67.1.CrossRefGoogle Scholar
  39. 39.
    Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157–173.PubMedCrossRefGoogle Scholar
  40. 40.
    Bhat KPL, Balasubramaniyan V, Vaillant B, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 2013;24:331–346.PubMedCrossRefGoogle Scholar
  41. 41.
    Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98–110.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Noushmehr H, Weisenberger DJ, Diefes K,et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17:510–522.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ceccarelli M, Barthel FP, Malta TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016;164:550–563.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gill BJ, Pisapia DJ, Malone HR, et al. MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc Natl Acad Sci U S A 2014;111:12550–12555.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wang J, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy. Nat Genet 2016;48:768–776.PubMedCrossRefGoogle Scholar
  46. 46.
    Kozak KR, Mahadevan A, Moody JS. Adult gliosarcoma: epidemiology, natural history, and factors associated with outcome. Neuro Oncol 2009;11:183–191.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Han SJ, Yang I, Tihan T, Prados MD, Parsa AT. Primary gliosarcoma: key clinical and pathologic distinctions from glioblastoma with implications as a unique oncologic entity. J Neurooncol 2010;96:313–320.PubMedCrossRefGoogle Scholar
  48. 48.
    Reis RM, Könü-Lebleblicioglu D, Lopes JM, Kleihues P, Ohgaki H. Genetic profile of gliosarcomas. Am J Pathol 2000;156:425–432.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kozak KR, Moody JS. Giant cell glioblastoma: a glioblastoma subtype with distinct epidemiology and superior prognosis. Neuro Oncol 2009;11:833–841.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Oh JE, Ohta T, Nonoguchi N, et al. Genetic alterations in gliosarcoma and giant cell glioblastoma. Brain Pathol 2016;26:517–522.PubMedCrossRefGoogle Scholar
  51. 51.
    Erson-Omay EZ, Çağlayan AO, Schultz N, et al. Somatic POLEmutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro Oncol 2015;17:1356–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2016;0:207–216.Google Scholar
  53. 53.
    Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509–2520.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Akimoto J, Namatame H, Haraoka J, Kudo M. Epithelioid glioblastoma: a case report. Brain Tumor Pathol 2005;22:21–27.PubMedCrossRefGoogle Scholar
  55. 55.
    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 2013;37:685–698.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Broniscer A, Tatevossian RG, Sabin ND, et al. Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma. Neuropathol Appl Neurobiol 2014;40:327–336.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Makuria AT, Rushing EJ, McGrail KM, Hartmann D-P, Azumi N, Ozdemirli M. Atypical teratoid rhabdoid tumor (AT/RT) in adults: review of four cases. J Neurooncol 2008;88:321–330.PubMedCrossRefGoogle Scholar
  58. 58.
    Alexandrescu S, Korshunov A, Lai SH, et al. Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas-same entity or first cousins? Brain Pathol 2015;26:215–223.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsumura N, Nakajima N, Yamazaki T, et al. Concurrent TERT promoter and BRAF V600E mutation in epithelioid glioblastoma and concomitant low-grade astrocytoma. Neuropathology 2017;37:58–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Ida CM, Rodriguez FJ, Burger PC, et al. Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol 2014;25:575–586.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dias-Santagata D, Lam Q, Vernovsky K, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLOS ONE 2011;6:e17948–e17949.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Schindler G, Capper D, Meyer J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121:397–405.PubMedCrossRefGoogle Scholar
  63. 63.
    Blumke I, Wiestler OD. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 2002;61:575–584.CrossRefGoogle Scholar
  64. 64.
    Gupta K, Orisme W, Harreld JH, et al. Posterior fossa and spinal gangliogliomas form two distinct clinicopathologic and molecular subgroups. Acta Neuropathol Commun 2014;2:18.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dougherty MJ, Santi M, Brose MS, et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010;12:621–630.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Armstrong TS, Vera-Bolanos E, Bekele BN, Aldape K, Gilbert MR. Adult ependymal tumors: prognosis and the M. D. Anderson Cancer Center experience. Neuro Oncol 2010;12:862–870.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wu J, Armstrong TS, Gilbert MR. Biology and management of ependymomas. Neuro Oncol 2016;18:902–913.PubMedCrossRefGoogle Scholar
  68. 68.
    Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16(Suppl. 4):iv1–63.Google Scholar
  69. 69.
    Merchant PTE, Li C, Xiong PX, Kun PLE, Boop FA, Sanford RA. A prospective study of conformal radiation therapy for pediatric ependymoma. Lancet Oncol 2009;10:258–266.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bouffet E, Tabori U, Huang A, Bartels U. Ependymoma: lessons from the past, prospects for the future. Childs Nerv Syst 2009;25:1383–1384.PubMedCrossRefGoogle Scholar
  71. 71.
    Vera-Bolanos E, Aldape K, Yuan Y, et al. Clinical course and progression-free survival of adult intracranial and spinal ependymoma patients. Neuro Oncol 2015;17:440–447.PubMedGoogle Scholar
  72. 72.
    Pajtler KW, Witt H, Sill M, et al. Molecular classification of ependymal tumors across all cns compartments, histopathological grades, and age groups. Cancer Cell 2015;27:728–743.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ebert C, Haken von M, Meyer-Puttlitz B, et al. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 1999;155:627–632.Google Scholar
  74. 74.
    Witt H, Mack SC, Ryzhova M, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 2011;20:143–157.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mack SC, Witt H, Piro RM, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 2014;506:445–450.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 2014;506:451–455.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 2012;12:663–670.PubMedCrossRefGoogle Scholar
  78. 78.
    Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012;18:624–629.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pope WB, Prins RM, Albert Thomas M, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 2012;107:197–205.PubMedCrossRefGoogle Scholar
  80. 80.
    Beiko J, Suki D, Hess KR, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol 2013;16:81–91.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Andronesi OC, Rapalino O, Gerstner E, et al. Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest 2013;123:3659–3663.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Behling F, Barrantes-Freer A, Skardelly M, et al. Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn Pathol 2016;11:55.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 2014;128:573–581.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jones C, Karajannis MA, Jones DTW, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 2016 Jun 9 [Epub ahead of print].Google Scholar
  85. 85.
    Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370:709–722.PubMedCrossRefGoogle Scholar
  86. 86.
    Sandmann T, Bourgon R, Garcia J, et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol 2015;33:2735–2744.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009;8:627–644.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Heimberger AB, Hlatky R, Suki D, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005;11:1462–1466.PubMedCrossRefGoogle Scholar
  89. 89.
    Raizer JJ, Abrey LE, Lassman AB, et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 2010;12:95–103.PubMedCrossRefGoogle Scholar
  90. 90.
    Uhm JH, Ballman KV, Wu W, et al. Phase II evaluation of gefitinib in patients with newly diagnosed grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int J Radiat Oncol Biol Phys 2011;80:347–353.PubMedCrossRefGoogle Scholar
  91. 91.
    Hasselbalch B, Lassen U, Hansen S, et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 2010;12:508–516.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Malkki H. Trial Watch: glioblastoma vaccine therapy disappointment in Phase III trial. Nat Rev Neurol 2016;12:190.PubMedCrossRefGoogle Scholar
  93. 93.
    Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 2012;12:197–209.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Radiation Therapy Oncology Group. A study of ABT-414 in subjects with newly diagnosed glioblastoma (GBM) with epidermal growth factor receptor (EGFR) amplification (intellance 1). Available at: Accessed 24 October 2016.
  95. 95.
    Johnson LA, Scholler J, Ohkuri T, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015;7:275ra22.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gupta SK, Kizilbash SH, Carlson BL, et al. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst 2015;108.Google Scholar
  97. 97.
    Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014;512:324–327.PubMedCrossRefGoogle Scholar
  98. 98.
    Seltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010;70:8981–8987.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wan PTC, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK Signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855–867.PubMedCrossRefGoogle Scholar
  100. 100.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949–954.PubMedCrossRefGoogle Scholar
  101. 101.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507–2516.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Chamberlain MC. Recurrent ganglioglioma in adults treated with BRAF inhibitors. CNS Oncol 2016;5:27–29.PubMedCrossRefGoogle Scholar
  103. 103.
    Rush S, Foreman N, Liu A. Brainstem ganglioglioma successfully treated with vemurafenib. J Clin Oncol 2013;31:e159–e160.PubMedCrossRefGoogle Scholar
  104. 104.
    del Bufalo F, Carai A, Figà-Talamanca L, et al. Response of recurrent BRAFV600E mutated ganglioglioma to Vemurafenib as single agent. J Transl Med 2014;12:356.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Aguilera D, Janss A, Mazewski C, et al. Successful retreatment of a child with a refractory brainstem ganglioglioma with vemurafenib. Pediatr Blood Cancer 2015;63:541–543.PubMedCrossRefGoogle Scholar
  106. 106.
    Kleinschmidt-DeMasters BK, Aisner DL, Foreman NK. BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am J Surg Pathol 2015;39:528–540.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 2014;14:397.CrossRefGoogle Scholar
  108. 108.
    Skrypek M, Foreman N, Guillaume D, Moertel C. Pilomyxoid astrocytoma treated successfully with vemurafenib. Pediatr Blood Cancer 2014;61:2099–2100.PubMedCrossRefGoogle Scholar
  109. 109.
    Lee EQ, Ruland S, LeBoeuf NR, Wen PY, Santagata S. Successful treatment of a progressive BRAF V600E-mutated anaplastic pleomorphic xanthoastrocytoma with vemurafenib monotherapy. J Clin Oncol 2016;34:e87–e89.PubMedCrossRefGoogle Scholar
  110. 110.
    Chamberlain MC. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J Neuro Oncol 2013;114:237–240.CrossRefGoogle Scholar
  111. 111.
    Johnson BE, Mazor T, Hong C, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014;343:189–193.PubMedCrossRefGoogle Scholar
  112. 112.
    van Thuijl HF, Mazor T, Johnson BE, et al. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 2015;129:597–607.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Ricky Chen
    • 1
  • Matthew Smith-Cohn
    • 1
  • Adam L. Cohen
    • 2
  • Howard Colman
    • 3
  1. 1.Department of Neurology, Clinical Neurosciences CenterUniversity of UtahSalt Lake CityUSA
  2. 2.Division of Oncology, Department of Internal Medicine, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Neurosurgery, Huntsman Cancer Institute and Clinical Neuroscience CenterUniversity of UtahSalt Lake CityUSA

Personalised recommendations