, Volume 14, Issue 2, pp 274–283 | Cite as

Targeting Epigenetic Pathways in the Treatment of Pediatric Diffuse (High Grade) Gliomas



Progress in the treatment of adult high-grade gliomas (HGG), including chemoradiation with concurrent and adjuvant temozolomide for glioblastoma, has not translated into significant therapeutic advances for pediatric HGG, where overall survival has plateaued at 15% to 20%, especially when considering specialized pediatric treatment in tertiary care centers, maximal safe neurosurgical resection, optimized delivery of involved field radiation, and improvements in supportive care. However, recent advances in our understanding of pediatric HGG, including the application of next-generation sequencing and DNA methylation profiling, have identified mutations in the histone variant H3.3 and canonical H3.1 genes, respectively. These mutations are relatively specific to neuroanatomic compartments (cortex, midline structures, thalamus, brainstem) and are often associated with other mutations, especially in specific growth factor receptor tyrosine kinases. Targeting epigenetic pathways affected by these histone mutations, alone or in combination with small molecule inhibitors of growth factor receptor signaling pathways, will inform new treatment strategies for pediatric HGG and should be incorporated into novel cooperative group clinical trial designs.


H3F3A HIST1H3B H3.3 K27M H3.1 K27M H3.3 G34R/V H3K27me (1, 2, 3) PDGFRA FGFR ACVR1 NTRK Epigenetic therapy 



Dr. Issai Vanan is the Father Peter J. Mckenna St Baldrick’s Cancer Research Scholar, supported by the St. Baldrick’s Foundation (USA). Dr. Underhill holds the Mary Johnston Chair in Melanoma Research, Alberta Cancer Foundation and University of Alberta (Canada). Dr. Eisenstat holds the Muriel and Ada Hole Kids with Cancer Society Chair in Pediatric Oncology, University of Alberta (Canada).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_514_MOESM1_ESM.pdf (1002 kb)
ESM 1 (PDF 1001 kb)
13311_2017_514_MOESM2_ESM.pdf (1.2 mb)
ESM 2 (PDF 1224 kb)


  1. 1.
    Ostrom QT, de Blank PM, Kruchko C, et al. CBTRUS statistical report: ALSF infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2015;17(Suppl. 1):v1–35.Google Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114(2):97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kaderali Z, Lamberti-Pasculli M, Rutka JT. The changing epidemiology of paediatric brain tumours: a review from the Hospital for Sick Children. Childs Nerv Syst 2009; 25:787–793.CrossRefPubMedGoogle Scholar
  4. 4.
    Louis DN, Perry A, Reifenberger G et al. The 2016 World Health Organization classification of tumors of the central nervous system. Acta Neuropathol 2016; 131:803–820.CrossRefPubMedGoogle Scholar
  5. 5.
    Sturm D, Witt H, Hovestadt H, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22: 425–437.CrossRefPubMedGoogle Scholar
  6. 6.
    Buczkowicz P, Hoeman C, Rakopoulus P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 2014; 46:451–456.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kramm CM, Butenhoff S, Rausche U, et al. Thalamic high-grade gliomas in children: a distinct clinical subset? Neuro Oncol 2011; 13:680–689.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vanan MI, Eisenstat DD. DIPG in children—what can we learn from the past. Front Oncol 2015; 5:237:1–17.Google Scholar
  9. 9.
    Grundy R, Walker D. Brain and spinal tumors: contemporary challenges in clinical practice. Pediatr Child Health 2010; 20:117–122.CrossRefGoogle Scholar
  10. 10.
    Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C. Histopathological spectrum of pediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 2014; 128:573–581.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nikbakht H, Panditharatna E, Mikael LG, et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 2016; 7:11185.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoffman LM, DeWire M, Ryall S, et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun 2016; 4: 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang X, Dubuc AM, Ramaswamy V, et al. Medulloblastoma subgroups remain stable across primary and metastatic compartments Acta Neuropathol 2015; 129: 449–457.Google Scholar
  14. 14.
    Jakacki RI, Cohen KJ, Buxton A, et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temolozomide and lomustine in the treatment of children with high-grade glioma: a report of the Children’s Oncology Group ACNS0423 study. Neuro Oncol 2016; 18: 1442–1450.CrossRefPubMedGoogle Scholar
  15. 15.
    Bouffet E, Ramaswamy V. Old chemotherapy makes a comeback: dual alkylator therapy for pediatric high-grade glioma. Neuro Oncol 2016; 18: 1333–1334.CrossRefPubMedGoogle Scholar
  16. 16.
    Ryall S, Krishnatry R, Arnoldo A, et al. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in pediatric thalamic glioma. Acta Neuropathol Commun 2016; 4: 93–103.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations—a special role for H3.3 in tumorigenesis? Chromosoma 2015; 124: 177–179.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maze I, Noh KM, Allis CD. Histone regulation in the CNS: Basic principles of Epigenetic plasticity. Neuropsychopharmacology 2013; 38:3–22CrossRefPubMedGoogle Scholar
  19. 19.
    Agger K, Cloos PAC, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449:731–734.CrossRefPubMedGoogle Scholar
  20. 20.
    Shen X, Liu Y, Hsu Y, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491–502.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu G, Diaz AK, Paugh BS, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014; 46:444–450.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bjerke L, Mackay A, Nandhabalan M, et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 2013; 3:512–519.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Puissant A, Frumm SM, Alexe G, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013; 3: 308–323.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cheng Z, Gong Y, Ma Y, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res 2013; 19: 1748–1759.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Iyer R, Varela CR, Minturn JE, et al. AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol 2012; 70:477–486.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iyer R, Evans AE, Qi X, et al. Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 2010; 16:1478–1485.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brockmann M, Poon E, Berry T, et al. Small molecule inhibitors of Aurora-A induce proteasomal degradation of N-Myc in childhood neuroblastoma. Cancer Cell 2013; 24:75–89.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shimomura T, Hasako S, Nakatsure Y, et al. MK-5108, a highly selective Aurora-A kinase inhibitor, shows antitumor activity alone and in combination with docetaxel. Mol Cancer Ther 2010; 9:157–166.CrossRefPubMedGoogle Scholar
  29. 29.
    Cole KA, Huggins J, Laquaglia M, et al. RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A 2011; 108:3336–3341.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wadhwa E, Nicolaides T. Bromodomain inhibitor review: bromodomain and extra-terminal Family Protein Inhibitors as a potential new therapy in central nervous system tumors. Cureus 2016; 8:e620.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Turcan S, Fabius AWM, Borodovsky A et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget 2013; 4: 1729–1736.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Borodovsky A, Salmasi V, Turcan S, et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 2013; 4: 1737–1747.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rohle D, Popovici-Muller J, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340:626–630.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang F, Travins J, DeLaBarre B, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340:622–626.CrossRefPubMedGoogle Scholar
  35. 35.
    Fujii T, Khawaja MR, DiNardo CD, Atkins JT, Janku F. Targeting isocitrate dehydrogenase (IDH) in cancer. Discov Med 2016; 21:373–380.PubMedGoogle Scholar
  36. 36.
    Ferris SP, Goode B, Joseph NM et al. IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10 years of age Acta Neuropathol 2016; 132: 153–155.CrossRefPubMedGoogle Scholar
  37. 37.
    Sturm D, Bender S, Jones DTW, et al. Paediatric and adult glioblastoma multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14:92–107.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hashizume R, Andor N, Ihara Y, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014; 20: 1394–1396.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Grasso CS, Tang Y, Truffaux N, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 2015; 21:555–559.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Singh MM, Johnson B, Venkatarayan A, et al. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro Oncol 2015; 17: 1463–1473.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ramaswamy V, Remke M, Taylor MD. An epigenetic therapy for diffuse intrinsic pontine gliomas Nat Med 2014; 20:1378–1379.Google Scholar
  42. 42.
    Bender S, Gronych J, Warnatz HJ, et al. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 2016; 22:1314–1320.CrossRefGoogle Scholar
  43. 43.
    Chi AS, Batchelor TT, Kwak EL, et al. Rapid radiographic and clinical improvement after treatment of MET-amplified recurrent glioblastoma with a mesenchymal-epithelial transition inhibitor. J Clin Oncol 2012; 30:e30-e33.CrossRefPubMedGoogle Scholar
  44. 44.
    Nicolaides TP, Li H, Solomon DA, et al. Targeted therapy for BRAF-V600E malignant astrocytoma. Clin Cancer Res 2011; 17:7595–7604.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Belden S, Flaherty KT. MEK and RAF inhibitors for BRAF-mutated cancers. Expert Rev Mol Med 2012; 14:1–10.CrossRefGoogle Scholar
  46. 46.
    Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E- mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 2014; 14: 258–262.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Preusser M, Bienkowski M, Birner P. BRAF inhibitors in BRAF-V600 mutated primary neuroepithelial brain tumors. Expert Opin Investig Drugs 2015; 25: 1–8.Google Scholar
  48. 48.
    Milde T, Kleber S, Korshunov A et al. A novel human high-risk ependymoma stem cell model reveals the differentiation inducing potential of the histone deacetylase inhibitor vorinostat. Acta Neuropathol 2011; 122: 637–650.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Buczkowicz P, Hawkins C. Pathology, molecular genetics and epigenetics of diffuse intrinsic pontine glioma Front Oncol 2015;5:147.Google Scholar
  50. 50.
    Funato K, Major T, Lewis PW, Allis CD, Tabar V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 2014; 346:1529–1533.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Grembecka J, He S, Shi A, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277–284.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ren J, Xu W, Tang L, et al. Design and synthesis of benzylpiperidine inhibitors targeting the menin-MLL1 interface. Bioorganic Med Chem Lett 2016; 26: 4472–4476.CrossRefGoogle Scholar
  53. 53.
    Koschmann C, Zamler D, Mackay A, et al. Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma. Oncotarget 2016 Oct 4 [Epub ahead of print].Google Scholar
  54. 54.
    Au K, Singh SK, Burrell K et al. A preclinical study demonstrating the efficacy of nilotinib in inhibiting the growth of pediatric high-grade glioma. J Neurooncol 2015; 122: 471–480.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Castel D, Phillipe C, Calmon R, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 2015; 130: 815–827.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 2014; 46(5):462–466.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Taylor KR, Mackay A, Truffaux N et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma Nat Genet 2014; 46: 457–461.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Luo Y, Alsamarah A, Zhang K, Hao J. Development of new therapeutic agents for Fibrodysplasia ossificans Progressiva. Curr Mol Med 2016; 16:4–11.CrossRefPubMedGoogle Scholar
  59. 59.
    Sanvitale CE, Kerr G, Chaikaud A, et al. A new class of small molecule inhibitor of BMP signaling. PLOS ONE 2013; 8:e62721.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Shimono K, Tung W, Macolino C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-g agonists. Nat Med 2011; 17:454–462.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cannon JE, Upton PD, Smith JC, et al. Intersegmental vessel formation in zebrafish: requirement for VEGF but not BMP signaling revealed by selective and non-selective BMP antagonists. Br J Pharm 2010; 161:140–149.CrossRefGoogle Scholar
  62. 62.
    Shankar GM, Lelic N, Gill CM, et al. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol 2016; 131:147–150.CrossRefPubMedGoogle Scholar
  63. 63.
    Solomon DA, Wood MD, Tihan T, et al. Diffuse midline gliomas with histone H3-K27M mutation: A series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 2016; 26: 569–580.CrossRefPubMedGoogle Scholar
  64. 64.
    Fontebasso AM, Gayden T, Nikbakht H, et al. Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors Acta Neuropathol 2014; 128: 615–627.Google Scholar
  65. 65.
    Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124:439–447.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodeling genes in paediatric glioblastoma. Nature 2012; 482:226–231.CrossRefPubMedGoogle Scholar
  67. 67.
    Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 2013; 125:659–669.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Becher OJ, Wechsler-Reya RJ. For pediatric glioma, leave no histone unturned. Science 2014; 346:1458–1459.CrossRefPubMedGoogle Scholar
  69. 69.
    Lewis PW, Müller MM, Koletsky MS, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013; 340, 857–861.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chan KM, Fang H, Gan H, et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 2013; 27:985–990.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Swartling FJ, Savov V, Persson AI, et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 2012; 21: 601–613.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: past, present and future. Neuro Oncol Pract 2014; 1:145–157.CrossRefGoogle Scholar
  73. 73.
    Jones C, Karajannis MA, Jones DT, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 2016 Jun 9 [Epub ahead of print].Google Scholar
  74. 74.
    Herz HM, Morgan M, Gao X, et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 2014; 345:1065–1070.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Masoudi A, Elopre M, Amini E, et al. Influence of valproic acid on outcome of High-grade gliomas in children. Anticancer Res 2008; 28: 2437–2442.PubMedGoogle Scholar
  76. 76.
    Kitange GJ, Mladek AC, Carlson BL, et al. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 2012; 18: 4070–4079.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol 2016; 18:16–26.CrossRefPubMedGoogle Scholar
  78. 78.
    Cheishvili D, Boureau L, Szyf M. DNA methylation and invasive cancer: implications for therapeutics. Br J Pharmacol 2015; 172: 2705–2715.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Research Institute in Oncology and Hematology, Departments of Pediatrics & Child Health and Biochemistry & Medical GeneticsUniversity of ManitobaWinnipegCanada
  2. 2.Division of Experimental Oncology, Department of Oncology, Cross Cancer InstituteUniversity of AlbertaEdmontonCanada
  3. 3.Division of Hematology/Oncology and Palliative Care, Stollery Children’s Hospital, Departments of Pediatrics, Medical Genetics and OncologyUniversity of AlbertaEdmontonCanada

Personalised recommendations