Skip to main content

Genetic Biomarkers in Epilepsy


The identification of valid biomarkers for outcome prediction of diseases and improvement of drug response, as well as avoidance of side effects is an emerging field of interest in medicine. The concept of individualized therapy is becoming increasingly important in the treatment of patients with epilepsy, as predictive markers for disease prognosis and treatment outcome are still limited. Currently, the clinical decision process for selection of an antiepileptic drug (AED) is predominately based on the patient’s epileptic syndrome and side effect profiles of the AEDs, but not on effectiveness data. Although standard dosages of AEDs are used, supplemented, in part, by therapeutic monitoring, the response of an individual patient to a specific AED is generally unpredictable, and the standard care of patients in antiepileptic treatment is more or less based on trial and error. Therefore, there is an urgent need for valid predictive biomarkers to guide patient-tailored individualized treatment strategies in epilepsy, a research area that is still in its infancy. This review focuses on genomic factors as part of an individual concept for AED therapy summarizing examples that influence the prognosis of the disease and the response to AEDs, including side effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Larson H, Chan E, Sudarsanam S, Johnson DE. Biomarkers. Methods Mol Biol 2013;930:253-273.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Engel J Jr, Pitkänen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia 2013;54:61-69.

    PubMed  Article  Google Scholar 

  3. 3.

    Weber YG, Lerche H. Genetic mechanism in epilepsy. Develop Med Child Neurol 2008;50:648-654.

    PubMed  Article  Google Scholar 

  4. 4.

    Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279:403-406.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18:53-55.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18:25-29.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Maljevic S, Wuttke TV, Seebohm G, Lerche H. KV7 channelopathies. Pflugers Arch 2010;460:277-288.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 2005;6:850-862.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Borgatti R, Zucca C, Cavallini A, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurol 2004;63:57-65.

    Article  CAS  Google Scholar 

  10. 10.

    Steinlein OK, Conrad C, Weidner B. Benign familial neonatal convulsions: always benign? Epilepsy Res 2007;73:245-249.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Weckhuysen S, Mandelstam S, Suls A, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 2012;7:15-25.

    Article  CAS  Google Scholar 

  12. 12.

    Orhan G, Bock M, Schepers D, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 2013 Dec 7 [Epub ahead of print].

  13. 13.

    Heron SE, Crossland KM, Andermann E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002;360:851-852.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Scalmani P, Rusconi R, Armatura E, et al. Effects in neocortical neurons of mutations of the Na(v)1.2 Na + channel causing benign familial neonatal-infantile seizures. J Neurosci 2006;26:10100-10109.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Liao Y, Deprez L, Maljevic S, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 2010;133:1043-1014.

    Article  Google Scholar 

  16. 16.

    Liao Y, Anttonen AK, Liukkonen E, et al. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 2010;75:14554-14558.

    Article  CAS  Google Scholar 

  17. 17.

    Ogiwara I, Ito K, Sawaishi Y, et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology 2009;73:1046-1053.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  18. 18.

    Chen WJ, Lin Y, Xiong ZQ, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011;43:1252-1255.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Lee HY, Huang Y, Bruneau N, et al. Mutations in the novel protein PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2012;26:2-12.

    Article  CAS  Google Scholar 

  20. 20.

    Heron SE, Grinton BE, Kivity S, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012;90:152-160.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  21. 21.

    Schubert S, Paravidino R, Becker F, et al. PRRT2 mutations are the major cause of benign familial infantile seizures (BFIS). Hum Mutat 2012;33:1439-1443.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Becker F, Schubert J, Striano P, et al. PRRT2-related disorders: Further PKD and ICCA cases and review of the literature. J Neurol 2013;260:1234-1244.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Heron SE, Ong YS, Yendle SC, et al. Mutations in PRRT2 are not a common cause of infantile epileptic encephalopathies. Epilepsia 2013;54:e86-89.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Labate A, Tarantino P, Viri M, et al. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences. Epilepsia 2012;53:e196-199.

    PubMed  Article  Google Scholar 

  25. 25.

    Najmabadi H Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011;479:57-63.

    Article  CAS  Google Scholar 

  26. 26.

    Covanis A. Epileptic encephalopathies (including severe epilepsy syndromes). Epilepsia 2012;53(Suppl. 4):114-126.

    PubMed  Article  Google Scholar 

  27. 27.

    von Spiczak S. Genetische Ursachen epileptischer Enzephalopathien. Z Epileptol 2011;24:108-113.

    Article  Google Scholar 

  28. 28.

    Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68:1327-1332.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  29. 29.

    Harkin LA, McMahon JM, Iona X, et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 2007;30: 843-852.

    Article  Google Scholar 

  30. 30.

    Gambardella A, Marini C. Clinical spectrum of SCN1A mutations. Epilepsia 2009;50(Suppl. 5):20-23.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Chiron C, Marchand MC, Tran A, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 2000;356:1638-1642.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998;39:508-512.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Lerche H, Shah M, Beck H, Noebels JL, Johnston D, Vincent A. Ion channels in genetic and acquired forms of epilepsy. J Physiol 2013;591:753-764.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  34. 34.

    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effevtiveness of valproate, lamtrigine, or topiramate for generalised and unclassifiable epilepsy: an unblended randomised controlled trial. Lancet 2007;369:1012-1026.

    Google Scholar 

  35. 35.

    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effevtiveness carbamazepine, gabapentin, lamotrigin, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled study. Lancet 2007;369:1000-1015.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  36. 36.

    Glauser TA, Cnaan A, Shinnar S, et al. Childhood Absence Epilepsy Study Group. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 2010;632:790-799.

    Article  Google Scholar 

  37. 37.

    Klamer S, Singh A, Gil-Nagel A, et al. Current recommendations, guidelines, and expert views of practical anticonvulsant therapy. In: Lerche H, Potschka H (eds) Therapeutic targets and perspectives in the pharmacological treatment of epilepsy. Germany, UNI-MED Verlag AG, 2013, pp. 26–36.

  38. 38.

    Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010;51:1069-1077.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Callaghan BC, Anand K, Hesdorffer D, Hauser WA, French JA. Likelihood of seizure remission in an adult population with refractory epilepsy. Ann Neurol 2007;62:382-389.

    PubMed  Article  Google Scholar 

  40. 40.

    Luciano AL, Shorvon SD. Results of treatment changes in patients with apparently drug-resistant chronic epilepsy. Ann Neurol 2007;62:375-381.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 2000;282:73-76.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 2005;67:1009-1017.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Seidner G, Alvarez MG, Yeh JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998;18:188-191.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Weber YG, Storch A, Wuttke TV, et al. GLUT1 mutations are a cause of paroxysmal exercise-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 2008,118:2157-2168.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. 45.

    Suls A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008;131:1831-1844.

    PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Suls A, Mullen SA, Weber YG, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 2009;66:415-419.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Striano P, Weber YG, Toliat MR, et al. GLUT1-mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology 2012;78:557-562.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Arsov T, Mullen SA, Rogers S, et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol 2012;72:807-815.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 2005;102:5507-5512.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  50. 50.

    Zimprich F, Stogmann E, Bonelli SB, et al. A functional polymorphism in the SCN1A gene is not associated with carbamazepine dosages in Austrian patients with epilepsy. Epilepsia 2008;49:1108-1109.

    PubMed  Article  Google Scholar 

  51. 51.

    EPICURE Consortium; EMINet Consortium, Steffens M, et al. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 2012;21:5359-5372.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Kasperaviciute D, Catarino CB, Matarin M, et al. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 2013;136:3140-3150.

    PubMed Central  PubMed  Article  Google Scholar 

  53. 53.

    Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 2003;53:469-479.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H. Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 2010;30:8489-8501.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Meyer UA, Zanger UM, Schwab M. Omics and drug response. Annu Rev Pharmacol Toxicol 2013;53:475-502.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-141.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Nies AT, Schwab M, Keppler D. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol 2008;4:545-568.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-236.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011;16:704-714.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 2012;52:249-273.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012;64:943-952.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009;50:1-23.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep 2012;64:1011-1019.

    PubMed  Google Scholar 

  64. 64.

    Ebid AH, Ahmed MM, Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Ther Drug Monit 2007;29:305-312.

    PubMed  Article  Google Scholar 

  65. 65.

    Simon C, Stieger B, Kullak-Ublick GA, et al. Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand 2007;115:232-242.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Lovrić M, Božina N, Hajnšek S, et al. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients Ther Drug Monit 2012;34:518-525.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012;64:919-929.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Nakanishi H, Yonezawa A, Matsubara K, Yano I. Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of antiepileptic drugs in knockout mouse models. Eur J Pharmacol 2013;710:20-28.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Dombrowski SM, Desai SY, Marroni M, et al. Overexpression ofmultiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 2001;42:1501-1506.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    van Vliet E, Redeker S, Aronica E, et al. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 2005;46:1569-1580.

    PubMed  Article  Google Scholar 

  72. 72.

    Basic S, Hajnsek S, Bozina N, Filipcic I, Sporis D, Mislov D, Posavec A. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure 2008;17:524-530.

    PubMed  Article  Google Scholar 

  73. 73.

    Siddiqui A, Kerb R, Weale ME, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003;348:1442-1448.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia 2009;50:898-903.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Haerian BS, Roslan H, Raymond AA, et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure 2010;19:339-346.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Feldmann M, Asselin MC, Liu J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol 2013;12:777-785.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Hung CC, Huang HC, Gao YH, et al. Effects of polymorphisms in six candidate genes on phenytoin maintenance therapy in Han Chinese patients. Pharmacogenomics 2012;13:1339-1349.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Twardowschy CA, Werneck LC, Scola RH, Borgio JG, De Paola L, Silvado C. The role of CYP2C9 polymorphisms in phenytoin-related cerebellar atrophy. Seizure 2013;22:194-197.

    PubMed  Article  Google Scholar 

  79. 79.

    Kerb R, Aynacioglu AS, Brockmöller J, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J 2001;1:204-210.

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia 2013;54:11-27.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Rieger JK, Klein K, Winter S, Zanger UM. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 2013;41:1752-1762.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Schaeffeler E, Hellerbrand C, Nies AT, et al. DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med 2011;3:82.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  83. 83.

    Urban TJ, Brown C, Castro RA, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 2008;83:416-421.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Chaudhry AS, Urban TJ, Lamba JK, et al. CYP2C9*1B promoter polymorphisms, in linkage with CYP2C19*2, affect phenytoin autoinduction of clearance and maintenance dose. J Pharmacol Exp Ther 2010;332:599-611.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  85. 85.

    Makmor-Bakry M, Sills GJ, Hitiris N, Butler E, Wilson EA, Brodie MJ. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin Neuropharmacol. 2009;32:205-212.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Kwan P, Brodie MJ. Epilepsy after the first drug fails: substitution or add-on? Seizure 2000;9:464-468.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology 2012;78:1548-1554.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  88. 88.

    Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol 2012;11:792-802.

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006;16:297-306.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Kim SH, Lee KW, Song WJ, et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res 2011;97:190-197.

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Kaniwa N, Saito Y, Aihara M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 2010 ;51:2461-2465.

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Chen P, Lin JJ, Lu CS, et al. Taiwan SJS Consortium, Carbamazine-induced toxic effects and HLA-B*1502 screenin gin Taiwan, N Engl J Med 2011;346:1126-1133.

    Article  Google Scholar 

  93. 93.

    Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia 2013;54:1307-1314.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    An DM, Wu XT, Hu FY, Yan B, Stefan H, Zhou D. Association study of lamotrigine-induced cutaneous adverse reactions and HLA-B*1502 in a Han Chinese population. Epilepsy Res 2010;92:226-230.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011;364:1134-1143.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  96. 96.

    McCormack M, Urban TJ, Shianna KV, et al. Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions. Pharmacogenomics 2012;13:399-405.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  97. 97.

    Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011;20:1034-1041.

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Schwab M, Schaeffeler E. Pharmacogenomics: a key component of personalized therapy. Genome Med 2012;4:93.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

Download references


This work was supported by the European Commission 530 (FP7 project EpiPGX, 279062), the Robert Bosch Foundation (Stuttgart, Germany), the IZEPHA project 18-0-0 (University of Tübingen, Germany), and the Federal Ministry for Education and Research (BMBF, Berlin, Germany) grant 03 IS 2061C.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information



Corresponding authors

Correspondence to Yvonne G. Weber or Holger Lerche.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 511 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, Y.G., Nies, A.T., Schwab, M. et al. Genetic Biomarkers in Epilepsy. Neurotherapeutics 11, 324–333 (2014).

Download citation


  • HLA
  • Sodium channels
  • Side effect
  • Prognosis
  • Pharmaco-resistance
  • Pharmaco-response