Skip to main content
Log in

Surgical Treatment of Parkinson’s Disease: Patients, Targets, Devices, and Approaches

  • Review
  • Published:
Neurotherapeutics

Abstract

Surgical treatment for Parkinson’s disease (PD) has evolved from ablative procedures, within a variety of brain regions, to implantation of electrodes into specific targets of the basal ganglia. Electrode implantation surgery, referred to as deep brain stimulation (DBS), is preferred to ablative procedures by many experts owing to its reversibility, programmability, and the ability to be safely performed bilaterally. Several randomized clinical studies have demonstrated the effectiveness of DBS surgery for control of PD symptoms. Many brain targets, including the subthalamic nucleus and the globus pallidus internus, have emerged as potentially effective, with each target being closely associated with important pros and cons. Selection of appropriate PD candidates through a methodical interdisciplinary screening is considered a prerequisite for a successful surgical outcome. Despite recent growth in DBS knowledge, there is currently no consensus on the ideal surgical technique, the best surgical approach, and the most appropriate surgical target. DBS is now targeted towards treating specific PD-related symptoms in a given individual, and not simply addressing the disease with one pre-defined approach. In this review we will discuss the historical aspects of surgical treatments, the selection of an appropriate DBS candidate, the current surgical techniques, and recently introduced DBS-related technologies. We will address important pre- and postoperative issues related to DBS. We will also discuss the lessons learned from the randomized clinical studies for DBS and the shifting paradigm to tailor to a more patient-centered and symptom-specific approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kluger BM, Klepitskaya O, Okun MS. Surgical treatment of movement disorders. Neurol Clin 2009;27:633–677.

    Article  PubMed  Google Scholar 

  2. Kopell BH, Rezai AR, Chang JW, Vitek JL. Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson’s disease. Mov Disord 2006;21(Suppl. 14):S238-S246.

    Article  PubMed  Google Scholar 

  3. Gabriel EM, Nashold BS,Jr. Evolution of neuroablative surgery for involuntary movement disorders: an historical review. Neurosurgery 1998;42:575–590.

    Google Scholar 

  4. Cooper IS. Surgical alleviation of Parkinsonism; effects of occlusion of the anterior choroidal artery. J Am Geriatr Soc 1954;2:691–718.

    CAS  PubMed  Google Scholar 

  5. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science 1947;106:349–350.

    Article  CAS  PubMed  Google Scholar 

  6. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276:374–379.

    Article  CAS  PubMed  Google Scholar 

  7. Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends Neurosci 2000;23(10 Suppl.):S2-S7.

    Article  CAS  PubMed  Google Scholar 

  8. Tasker RR, Siqueira J, Hawrylyshyn P, Organ LW. What happened to VIM thalamotomy for Parkinson’s disease? Appl Neurophysiol 1983;46:68–83.

    CAS  PubMed  Google Scholar 

  9. Laitinen LV, Bergenheim AT, Hariz MI. Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg 1992;58:14–21.

    Article  CAS  PubMed  Google Scholar 

  10. Gill SS, Heywood P. Bilateral dorsolateral subthalamotomy for advanced Parkinson’s disease. Lancet 1997;350:1224.

    Article  CAS  PubMed  Google Scholar 

  11. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987;50:344–346.

    CAS  PubMed  Google Scholar 

  12. Bronstein JM, Tagliati M, Alterman RL, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 2011;68:165.

    Article  PubMed  Google Scholar 

  13. Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol 2005;62:1250–1255.

    Article  PubMed  Google Scholar 

  14. Lang AE, Houeto JL, Krack P, et al. Deep brain stimulation: preoperative issues. Mov Disord 2006;21(Suppl. 14):S171-S196.

    Article  PubMed  Google Scholar 

  15. Welter ML, Houeto JL, Tezenas du Montcel S, et al. Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain 2002;125:575–583.

    Article  CAS  PubMed  Google Scholar 

  16. Derost PP, Ouchchane L, Morand D, et al. Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology 2007;68:1345–1355.

    Article  PubMed  Google Scholar 

  17. Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE. Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 2003;99:489–495.

    Article  PubMed  Google Scholar 

  18. Okun MS, Foote KD. Parkinson’s disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Rev Neurother 2010;10:1847–1857.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Charles PD, Van Blercom N, Krack P, et al. Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology 2002;59:932–934.

    Article  CAS  PubMed  Google Scholar 

  20. Krack P, Pollak P, Limousin P, et al. Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 1998;121:451–457.

    Article  PubMed  Google Scholar 

  21. Vingerhoets FJ, Villemure JG, Temperli P, Pollo C, Pralong E, Ghika J. Subthalamic DBS replaces levodopa in Parkinson’s disease: two-year follow-up. Neurology 2002;58:396–401.

    Article  PubMed  Google Scholar 

  22. Morishita T, Rahman M, Foote KD, et al. DBS candidates that fall short on a levodopa challenge test: alternative and important indications. Neurologist 2011;17:263–268.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Landi A, Parolin M, Piolti R, et al. Deep brain stimulation for the treatment of Parkinson’s disease: the experience of the Neurosurgical Department in Monza. Neurol Sci 2003;24(Suppl. 1):S43-S44.

    Article  PubMed  Google Scholar 

  24. Iansek R, Rosenfeld JV, Huxham FE. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Med J Aust 2002;177:142–146.

    PubMed  Google Scholar 

  25. Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003;349:1925–1934.

    Article  CAS  PubMed  Google Scholar 

  26. Herzog J, Volkmann J, Krack P, Kopper F, Potter M, Lorenz D, et al. Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 2003;18:1332–1337.

    Article  PubMed  Google Scholar 

  27. Daniele A, Albanese A, Contarino MF, et al. Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003;74:175–182.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez-Oroz MC, Gorospe A, Guridi J, et al. Bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neurology 2000;55(12 Suppl. 6):S45-S51.

    CAS  PubMed  Google Scholar 

  29. Burkhard PR, Vingerhoets FJ, Berney A, Bogousslavsky J, Villemure JG, Ghika J. Suicide after successful deep brain stimulation for movement disorders. Neurology 2004;63:2170–2172.

    Article  CAS  PubMed  Google Scholar 

  30. Soulas T, Gurruchaga JM, Palfi S, Cesaro P, Nguyen JP, Fenelon G. Attempted and completed suicides after subthalamic nucleus stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry 2008;79:952–954.

    Article  CAS  PubMed  Google Scholar 

  31. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schupbach M, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain 2008;131:2720–2728.

    Article  PubMed  Google Scholar 

  32. Weintraub D, Duda JE, Carlson K, et al. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry 2013;84:1113–1138.

    Article  PubMed  Google Scholar 

  33. Pillon B, Ardouin C, Damier P, et al. Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology 2000;55:411–8.

    Article  CAS  PubMed  Google Scholar 

  34. Alegret M, Junque C, Valldeoriola F, et al. Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 2001;58:1223–1227.

    Article  CAS  PubMed  Google Scholar 

  35. Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004;75:834–839.

    Article  CAS  PubMed  Google Scholar 

  36. Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009;65:586–595.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Okun MS, Gallo BV, Mandybur G, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol 2012;11:140–149.

    Article  PubMed  Google Scholar 

  38. Okun MS, Fernandez HH, Rodriguez RL, Foote KD. Identifying candidates for deep brain stimulation in Parkinson’s disease: the role of the primary care physician. Geriatrics 2007;62:18–24.

    PubMed  Google Scholar 

  39. Okun MS, Foote KD. A mnemonic for Parkinson disease patients considering DBS: a tool to improve perceived outcome of surgery. Neurologist 2004;10:290.

    Article  PubMed  Google Scholar 

  40. Deuschl G, Schupbach M, Knudsen K, et al. Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson’s disease: concept and standards of the EARLYSTIM-study. Parkinsonism Relat Disord 2013;19:56–61.

    Article  PubMed  Google Scholar 

  41. Okun MS, Fernandez HH, Pedraza O, et al. Development and initial validation of a screening tool for Parkinson disease surgical candidates. Neurology 2004;63:161–163.

    Article  CAS  PubMed  Google Scholar 

  42. Moro E, Allert N, Eleopra R, et al. A decision tool to support appropriate referral for deep brain stimulation in Parkinson’s disease. J Neurol 2009;256:83–88.

    Article  PubMed  Google Scholar 

  43. Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid AL. Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord 2006;21(Suppl. 14):S247-S258.

    Article  PubMed  Google Scholar 

  44. Maciunas RJ, Galloway RL, Jr, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery 1994;35:682–694.

    Article  CAS  PubMed  Google Scholar 

  45. Benabid AL, Koudsie A, Benazzouz A, et al. Subthalamic stimulation for Parkinson’s disease. Arch Med Res 2000;31:282–289.

    Article  CAS  PubMed  Google Scholar 

  46. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A. Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 2002;97:591–597.

    Article  PubMed  Google Scholar 

  47. Schuurman PR, de Bie RM, Majoie CB, Speelman JD, Bosch DA. A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery. J Neurosurg 1999;91:911–914.

    Article  CAS  PubMed  Google Scholar 

  48. Duffner F, Schiffbauer H, Breit S, Friese S, Freudenstein D. Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir (Wien) 2002;144:445–451.

    Article  CAS  Google Scholar 

  49. Rezai AR, Kopell BH, Gross RE, Vitek JL, Sharan AD, Limousin P, et al. Deep brain stimulation for Parkinson’s disease: surgical issues. Mov Disord 2006;21(Suppl. 14):S197-S218.

    Article  PubMed  Google Scholar 

  50. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 2005;56:722–732.

    Article  PubMed  Google Scholar 

  51. Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001;345:956–963.

    Article  Google Scholar 

  52. Hariz MI. Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 2002;78:146–157.

    Article  PubMed  Google Scholar 

  53. Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 2007;85:235–242.

    Article  PubMed  Google Scholar 

  54. Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM. Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 2005;103:404–413.

    Article  PubMed  Google Scholar 

  55. Tai CH, Wu RM, Lin CH, Pan MK, Chen YF, Liu HM, et al. Deep brain stimulation therapy for Parkinson’s disease using frameless stereotaxy: comparison with frame-based surgery. Eur J Neurol 2010;17:1377–1385.

    PubMed  Google Scholar 

  56. Patel NK, Plaha P, Gill SS. Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes. Neurosurgery 2007;61(5 Suppl. 2):358–365.

    Article  PubMed  Google Scholar 

  57. Foltynie T, Zrinzo L, Martinez-Torres I, et al. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 2011;82:358–363.

    Article  CAS  PubMed  Google Scholar 

  58. Kumar R. Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson’s disease and dystonia. Mov Disord 2002;17(Suppl. 3):S198-S207.

    Article  PubMed  Google Scholar 

  59. Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 2006;21(Suppl. 14):S284-S289.

    Article  PubMed  Google Scholar 

  60. Follett K, Weaver F, Stern M, et al. Multisite randomized trial of deep brain stimulation. Arch Neurol 2005;62:1643–1644.

    Article  PubMed  Google Scholar 

  61. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006;355:896–908.

    Article  CAS  PubMed  Google Scholar 

  62. Williams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 2010;9:581–591.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ghika J, Villemure JG, Fankhauser H, Favre J, Assal G, Ghika-Schmid F. Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: a 2-year follow-up review. J Neurosurg 1998;89:713–718.

    Article  CAS  PubMed  Google Scholar 

  64. Volkmann J, Allert N, Voges J, Sturm V, Schnitzler A, Freund HJ. Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Ann Neurol 2004;55:871–875.

    Article  PubMed  Google Scholar 

  65. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 2012;79:55–65.

    Article  CAS  PubMed  Google Scholar 

  66. Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009;301:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Odekerken VJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013;12:37–44.

    Article  PubMed  Google Scholar 

  68. Okun MS, Foote KD. Subthalamic nucleus vs globus pallidus interna deep brain stimulation, the rematch: will pallidal deep brain stimulation make a triumphant return? Arch Neurol 2005;62:533–536.

    Article  PubMed  Google Scholar 

  69. Alberts JL, Hass CJ, Vitek JL, Okun MS. Are two leads always better than one: an emerging case for unilateral subthalamic deep brain stimulation in Parkinson’s disease. Exp Neurol 2008;214:1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Walker HC, Watts RL, Guthrie S, Wang D, Guthrie BL. Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson’s disease at 1 year. Neurosurgery 2009;65:302–309.

    Article  PubMed  Google Scholar 

  71. Taba HA, Wu SS, Foote KD, Hass CJ, Fernandez HH, Malaty IA, et al. A closer look at unilateral versus bilateral deep brain stimulation: results of the National Institutes of Health COMPARE cohort. J Neurosurg 2010;113:1224–1229.

    Article  PubMed  Google Scholar 

  72. Zahodne LB, Okun MS, Foote KD, et al. Greater improvement in quality of life following unilateral deep brain stimulation surgery in the globus pallidus as compared to the subthalamic nucleus. J Neurol 2009;256:1321–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368:610–622.

    Article  CAS  PubMed  Google Scholar 

  74. Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010;362:2077–2091.

    Article  CAS  PubMed  Google Scholar 

  75. Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005;62:554–560.

    Article  PubMed  Google Scholar 

  76. Chan DT, Zhu XL, Yeung JH, et al. Complications of deep brain stimulation: a collective review. Asian J Surg 2009;32:258–263.

    Article  PubMed  Google Scholar 

  77. Boviatsis EJ, Stavrinou LC, Themistocleous M, Kouyialis AT, Sakas DE. Surgical and hardware complications of deep brain stimulation. A seven-year experience and review of the literature. Acta Neurochir (Wien) 2010;152:2053–2062.

    Article  Google Scholar 

  78. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990;249:1436–1438.

    Article  CAS  PubMed  Google Scholar 

  79. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 2009;8:67–81.

    Article  PubMed  Google Scholar 

  80. Kumar R, Lozano AM, Sime E, Lang AE. Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 2003;61:1601–1604.

    Article  PubMed  Google Scholar 

  81. Limousin P, Speelman JD, Gielen F, Janssens M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 1999;66:289–296.

    Article  CAS  PubMed  Google Scholar 

  82. Lyons KE, Koller WC, Wilkinson SB, Pahwa R. Long term safety and efficacy of unilateral deep brain stimulation of the thalamus for parkinsonian tremor. J Neurol Neurosurg Psychiatry 2001;71:682–684.

    Article  CAS  PubMed  Google Scholar 

  83. Plaha P, Khan S, Gill SS. Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry 2008;79:504–513.

    Article  CAS  PubMed  Google Scholar 

  84. Xie T, Bernard J, Warnke P. Post subthalamic area deep brain stimulation for tremors: a mini-review. Transl Neurodegener 2012;1:20.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 2006;129:1732–1747.

    Article  PubMed  Google Scholar 

  86. Goff LK, Jouve L, Melon C, Salin P. Rationale for targeting the thalamic centre-median parafascicular complex in the surgical treatment of Parkinson’s disease. Parkinsonism Relat Disord 2009;15(Suppl. 3):S167-S170.

    Article  PubMed  Google Scholar 

  87. Stefani A, Peppe A, Pierantozzi M, et al. Multi-target strategy for Parkinsonian patients: the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res Bull 2009;78:113–118.

    Article  PubMed  Google Scholar 

  88. Mazzone P, Lozano A, Stanzione P, et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 2005;16:1877–1881.

    Article  PubMed  Google Scholar 

  89. Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 2007;130:1596–1607.

    Article  PubMed  Google Scholar 

  90. Khan S, Javed S, Mooney L, et al. Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson’s disease. Br J Neurosurg 2012;26:722–725.

    Article  PubMed  Google Scholar 

  91. Moreau C, Defebvre L, Devos D, et al. STN versus PPN-DBS for alleviating freezing of gait: toward a frequency modulation approach? Mov Disord 2009;24:2164–2166.

    Article  PubMed  Google Scholar 

  92. Fasano A, Herzog J, Seifert E, et al. Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov Disord 2011;26:844–851.

    Article  PubMed  Google Scholar 

  93. Moro E, Hamani C, Poon YY, et al. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 2010;133:215–224.

    Article  PubMed  Google Scholar 

  94. Ferraye MU, Debu B, Fraix V, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 2010;133:205–214.

    Article  CAS  PubMed  Google Scholar 

  95. Thevathasan W, Coyne TJ, Hyam JA, et al. Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 2011;69:1248–1253.

    Article  PubMed  Google Scholar 

  96. Khan S, Mooney L, Plaha P, et al. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson’s disease. Br J Neurosurg 2011;25:273–280.

    Article  PubMed  Google Scholar 

  97. Mazzone P, Insola A, Lozano A, et al. Peripeduncular and pedunculopontine nuclei: a dispute on a clinically relevant target. Neuroreport 2007;18:1407–1408.

    Article  PubMed  Google Scholar 

  98. Yelnik J. PPN or PPD, what is the target for deep brain stimulation in Parkinson’s disease? Brain 2007;130:e79.

    Article  PubMed  Google Scholar 

  99. Tagliati M. Turning tables: should GPi become the preferred DBS target for Parkinson disease? Neurology 2012;79:19–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Wagle Shukla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagle Shukla, A., Okun, M.S. Surgical Treatment of Parkinson’s Disease: Patients, Targets, Devices, and Approaches. Neurotherapeutics 11, 47–59 (2014). https://doi.org/10.1007/s13311-013-0235-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0235-0

Keywords

Navigation