Skip to main content
Log in

Animal Models of Parkinson’s Disease: A Gateway to Therapeutics?

  • Review
  • Published:
Neurotherapeutics

Abstract

Parkinson’s disease (PD) is a progressive, neurodegenerative disorder of unknown etiology, although a complex interaction between environmental and genetic factors has been implicated as a pathogenic mechanism of selected neuronal loss. A better understanding of the etiology, pathogenesis, and molecular mechanisms underlying the disease process may be gained from research on animal models. While cell and tissue models are helpful in unraveling involved molecular pathways, animal models are much better suited to study the pathogenesis and potential treatment strategies. The animal models most relevant to PD include those generated by neurotoxic chemicals that selectively disrupt the catecholaminergic system such as 6-hydroxydopamine; 1-methyl-1,2,3,6-tetrahydropiridine; agricultural pesticide toxins, such as rotenone and paraquat; the ubiquitin proteasome system inhibitors; inflammatory modulators; and several genetically manipulated models, such as α-synuclein, DJ-1, PINK1, Parkin, and leucine-rich repeat kinase 2 transgenic or knock-out animals. Genetic and nongenetic animal models have their own unique advantages and limitations, which must be considered when they are employed in the study of pathogenesis or treatment approaches. This review provides a summary and a critical review of our current knowledge about various in vivo models of PD used to test novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013;9:13-24.

    CAS  PubMed  Google Scholar 

  2. Chaudhuri KR, Odin P, Antonini A, Martinez-Martin P. Parkinson's disease: the non-motor issues. Parkinsonism Relat Disord 2011;17:717-723.

    PubMed  Google Scholar 

  3. Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 2008;131:1969-1978.

    PubMed  Google Scholar 

  4. Tofaris GK. Lysosome-dependent pathways as a unifying theme in Parkinson's disease. Mov Disord 2012;27:1364-1369.

    CAS  PubMed  Google Scholar 

  5. Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson's disease. Mov Disord 2013;28:24-30.

    CAS  PubMed  Google Scholar 

  6. Klein C, Westenberger A. Genetics of Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2:a008888.

    PubMed  Google Scholar 

  7. Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson’s disease. Mov Disord 2013;28:569-575

    CAS  PubMed  Google Scholar 

  8. Deng H, Liang H, Jankovic J. F-box only protein 7 gene in parkinsonian-pyramidal disease. JAMA Neurol 2013;70:20-24.

    PubMed  Google Scholar 

  9. Le W, Chen S, Jankovic J. Etiopathogenesis of Parkinson’s disease: A New Beginning? Neuroscientist 2009;15:28-35.

    Google Scholar 

  10. Jankovic J, Poewe W. Therapies in Parkinson's disease. Curr Opin Neurol 2012;25:433-447.

    CAS  PubMed  Google Scholar 

  11. Poewe W, Mahlknecht P, Jankovic J. Emerging therapies for Parkinson's disease. Curr Opin Neurol 2012;25:448-459.

    CAS  PubMed  Google Scholar 

  12. Blandini F and Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012; 279:1156-1166.

    CAS  PubMed  Google Scholar 

  13. Le W, Jankovic J. Animal models of Parkinson’s disease. In: Jankovic J (ed.) Parkinson’s disease: diagnosis, motor symptoms and non-motor features. Clinical Insights E-Book Series, Future Science Group, London, UK, www.futuremedicine.com, 2013, pp. 115-136.

  14. McDowell K, Chesselet MF. Animal models of the non-motor features of Parkinson's disease. Neurobiol Dis 2012;46:597-606.

    PubMed Central  PubMed  Google Scholar 

  15. Landis SC, Amara SG, Asadullah K, et al. A call for transparent reporting to optimize thepredictive value of preclinical research. Nature 2012;490:187-191.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Silberberg SD. Should clinicians care about preclinical animal research? Neurology 2013;80:1072-1073.

    PubMed  Google Scholar 

  17. Ungerstedt U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968;5:107-110.

    CAS  PubMed  Google Scholar 

  18. Breese GR, Traylor TD. Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 1971;42:88-99.

    CAS  PubMed  Google Scholar 

  19. Javoy F, Sotelo C, Herbet A, Agid Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 1976;102:201-215.

    CAS  PubMed  Google Scholar 

  20. Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994;59:401-415.

    CAS  PubMed  Google Scholar 

  21. Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations inaxonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain 2012;135:2058-2073.

    PubMed  Google Scholar 

  22. Schwarting RKW, Huston P. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996;49:215-266.

    CAS  PubMed  Google Scholar 

  23. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979-980.

    CAS  PubMed  Google Scholar 

  24. Javitch JA, D'Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine:Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 1985;82:2173-2177.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Madras BK, Fahey MA, Goulet M, et al. Dopamine transporter (DAT) inhibitors alleviate specific Parkinsonian deficits in monkeys: association with DAT occupancy in vivo. J Pharmacol Exp Ther 2006;319:2570-2585.

    Google Scholar 

  26. Porras G, Li Q, Bezard E Modeling Parkinson's disease in primates: The MPTP model. Cold Spring Harb Perspect Med 2012;2:a009308

    PubMed  Google Scholar 

  27. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999;46:598-605.

    CAS  PubMed  Google Scholar 

  28. Rose S, Nomoto M, Jackson EA, et al. Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. Eur J Pharmacol 1993;230:177-185.

    CAS  PubMed  Google Scholar 

  29. Antzoulatos E, Jakowec MW, Petzinger GM, Wood RI. Sex differences in motor behavior in the MPTP mouse model of Parkinson’s disease. Pharmacol Biochem Behav 2010;95:466-472.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Verhave PS, Jongsma MJ, Van den Berg RM, et al. REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep 2011;34:1119-1125.

    PubMed  Google Scholar 

  31. Luszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep 2009;61:197-216.

    CAS  PubMed  Google Scholar 

  32. Grégoire L, Jourdain VA, Townsend M, Roach A, Di Paolo T. Safinamide reduces dyskinesias and prolongs l-DOPA antiparkinsonian effect in parkinsonian monkeys. Parkinsonism Relat Disord 2013;19:508-514.

    PubMed  Google Scholar 

  33. Stocchi F, Borgohain R, Onofrj M, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson's disease patients. Mov Disord 2012;27:106-112.

    CAS  PubMed  Google Scholar 

  34. Schapira AH, Fox S, Hauser R, Jankovic J, Jost W, Kulisevsky J, Pahwa R, Poewe W, and Anand R on behalf of the SETTLE Investigators. Safinamide add on to L-dopa: A randomized, placebo-controlled, 24-week global trial in patients with Parkinson’s disease (PD) and motor fluctuations (SETTLE). Presented at the 65th Annual Meeting of the AAN, San Diego, CA, 18-21 March 2013.

  35. Kordower JH, Herzog CD, Dass B, et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 2006;60:706-715.

    CAS  PubMed  Google Scholar 

  36. Herzog CD, Dass B, Holden JE, et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 2007;22:1124-1132.

    PubMed  Google Scholar 

  37. Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomized, controlled trial. Lancet Neurol 2010;9:1164-1172.

    CAS  PubMed  Google Scholar 

  38. Bartus RT, Herzog CD, Chu Y, et al. Bioactivity of AAV2-neurturin gene therapy (CERE-120): Differences between Parkinson's disease and nonhuman primate brains. Mov Disord 2011;26:27-36.

    PubMed  Google Scholar 

  39. Bartus RT, Baumann TL, Siffert J, et al. Safety/feasibility of targeting thesubstantia nigra with AAV2-neurturin in Parkinson patients. Neurology 2013;80:1698-1701.

    CAS  PubMed  Google Scholar 

  40. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Björklund A. α-Synuclein-induced down-regulation of Nurr1 function disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 2012;4:163ra156.

    PubMed  Google Scholar 

  41. Berry C, La Vecchia C, Nicotera P. Paraquat and parkinson's disease. Cell Death Differ 2010;17:1115-1125.

    CAS  PubMed  Google Scholar 

  42. Shimizu K, Ohtaki K, Matsubara K, et al. Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Res 2001;906:135-142.

    CAS  PubMed  Google Scholar 

  43. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 1999; 823:1-10.

    CAS  PubMed  Google Scholar 

  44. Czerniczyniec A, Karadayian AG, Bustamante J, Cutrera RA, Lores-Arnaiz S. Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radic Biol Med 2011;51:1428-1436.

    CAS  PubMed  Google Scholar 

  45. Day BJ, Patel M, Calavetta L, Chang LY, Stamler JS. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A 1999;96:12760-12765.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002;10:119-127.

    CAS  PubMed  Google Scholar 

  47. Rappold PM, Cui M, Chesser AS, et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc Natl Acad Sci U S A. 2011;108:20766-20771.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 2002;277:1641-1644.

    CAS  PubMed  Google Scholar 

  49. Vaccari A, Saba PL, Ruiu S, Collu M, Devoto P. Disulfiram and diethyldithiocarbamate intoxication affects the storage and release of striatal dopamine. Toxicol Appl Pharmacol 1996; 139:102-108.

    CAS  PubMed  Google Scholar 

  50. Thiruchelvam M, McCormack A, Richfield EK, et al. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci 2003;18:589-600

    PubMed  Google Scholar 

  51. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3:1301-1306.

    CAS  PubMed  Google Scholar 

  52. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 2002;22:10690-10698.

    CAS  PubMed  Google Scholar 

  53. Alam M, Mayerhofer A, Schmidt WJ. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA. Behav Brain Res 2004;151:117-124.

    CAS  PubMed  Google Scholar 

  54. Pan-Montojo F, Anichtchik O, Dening Y, et al. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLos One 2010;5:e8762.

    PubMed Central  PubMed  Google Scholar 

  55. Luk KC, Kehm VM, Zhang B, O'Brien P, Trojanowski JQ, Lee VM. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 2012;209:975-986.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 2013;73:155-169

    CAS  PubMed  Google Scholar 

  57. Vernon AC, Johansson SM, Modo MM. Non-invasive evaluation of nigrostriatal neuropathology in a proteasome inhibitor rodent model of Parkinson's disease. BMC Neurosci 2010;11:1.

    PubMed Central  PubMed  Google Scholar 

  58. Xie W, Li X, Li C, Zhu W, Jankovic J, Le W. Proteasome inhibition modeling nigral neuron degeneration in Parkinson's disease. J Neurochem 2010;115:188-199.

    CAS  PubMed  Google Scholar 

  59. Li C, Biswas S, Li X, Dutta AK, Le W. Novel D3 dopamine receptor preferring agonist D-264: Evidence of neuroprotective property in Parkinson’s disease animal models induced by MPTP and lactacystin. J Neurosci Res 2010;15:2513-2523.

    Google Scholar 

  60. Zhang Z, Li X, Xie W, et al. Anti-parkinsonian effects of Nurr1 activator in ubiquitin-proteasome system impairment induced Animal model of Parkinson's disease. CNS Neurol Disord Drug Targets 2012;11:768-773

    CAS  PubMed  Google Scholar 

  61. Ahmed I, Liang Y, Schools S, et al. Development and characterization of a new Parkinson's disease model resulting from impaired autophagy. J Neurosci 2012;32:16503-16509.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ted MD, Han SK, Valina LD. Genetic animal models of Parkinson’s disease. Neuron 2010;66:646-661.

    Google Scholar 

  63. Lee VM, Trojanowski JQ. Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 2006;52:33-38.

    CAS  PubMed  Google Scholar 

  64. Spillantini MG, Goedert M. The α-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann NY Acad Sci 2000;920:16-27.

    CAS  PubMed  Google Scholar 

  65. Lee FJS, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 2001;15:916-926.

    CAS  PubMed  Google Scholar 

  66. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000;287:1265-1269.

    CAS  PubMed  Google Scholar 

  67. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VMY. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 2002;34:521-533.

    CAS  PubMed  Google Scholar 

  68. Chesselet MF. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 2008;209:22-27.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Lam HA, Wu N, Cely I, et al. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human alpha-synuclein. J Neurosci Res 2011;89:1091-1102.

    CAS  PubMed  Google Scholar 

  70. Wakamatsu M, Ishii A, Iwata S, et al. Selective loss of nigral dopamine neurons induced by overexpression of truncated human alpha-synuclein in mice. Neurobiol Aging 2008;29:574-585.

    CAS  PubMed  Google Scholar 

  71. Dunning CJ, George S, Brundin P. What's to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease? Prion 2013;7:92-97.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44:601-607.

    CAS  PubMed  Google Scholar 

  73. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006;9:1231-1233.

    CAS  PubMed  Google Scholar 

  74. West AB, Moore DJ, Choi C, et al. Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 2007;16:223-232.

    CAS  PubMed  Google Scholar 

  75. Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci 2006;29:286-293

    CAS  PubMed  Google Scholar 

  76. Lin X, Parisiadou L, Gu XL, et al. Leucine-rich repeat kinase 2 regulates the progression ofneuropathology induced by Parkinson’s-disease-related mutant αsynuclein. Neuron 2009;64:807-827.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Li Y, Liu W, Oo TF, et al. Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 2009;12:826-828.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Kumar A, Cookson MR. Role of LRRK2 kinase dysfunction in Parkinson disease. Expert Rev Mol Med 2011;13:e20.

    PubMed  Google Scholar 

  79. Hinkle KM, Yue M, Behrouz B, et al. LRRK2knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener 2012;7:25

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Hindle SJ, Elliott CJ. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy 2013;9:936-938.

    CAS  PubMed  Google Scholar 

  81. Lücking CB, Dürr A, Bonifati V, et al; French Parkinson's Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease. Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med 2000;342:1560-1567

    PubMed  Google Scholar 

  82. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605-608.

    CAS  PubMed  Google Scholar 

  83. Doherty KM, Silveira-Moriyama L, Parkkinen L, et al. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 2012;32:124-132.

    Google Scholar 

  84. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A. 2000;97:13354-13359.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003;278:43628-43635.

    CAS  PubMed  Google Scholar 

  86. Von Coelln R, Thomas B, Savitt JM, et al. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci U S A 2004;101:10744-10749.

    Google Scholar 

  87. Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 2005;102:2174-2179.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004;279:18614-18622.

    CAS  PubMed  Google Scholar 

  89. Hedrich K, Djarmati A, Schafer N, et al. DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 2004;62:389-394.

    CAS  PubMed  Google Scholar 

  90. Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005;14:2063-2073.

    CAS  PubMed  Google Scholar 

  91. Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H, Mizusawa H. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 2003;312:1342-1348.

    CAS  PubMed  Google Scholar 

  92. Martinat C, Shendelman S, Jonason A, et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary parkinsonism. PLoS Biol 2004;2:e327.

    PubMed Central  PubMed  Google Scholar 

  93. Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol 2004;2:e362.

    PubMed Central  PubMed  Google Scholar 

  94. Paterna JC, Leng A, Weber E, Feldon J, Bueler H. DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 2007;15:698-704.

    CAS  PubMed  Google Scholar 

  95. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 2011;286:14941-14951.

    CAS  PubMed  Google Scholar 

  96. Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005;45:489-496.

    CAS  PubMed  Google Scholar 

  97. Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 2005;102:5215-5220.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. Ann Rev Pathol 2011;6:193-222.

    CAS  Google Scholar 

  99. Jankovic J, Chen S, Le W. The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 2005;77:128-138.

    CAS  PubMed  Google Scholar 

  100. Li J, Dani J, Le W. Role of Pitx3 in the dopamine neuron development and Parkinson’s disease. Curr Top Med Chem 2009;9:855-859.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kadkhodaei B, Ito T, Joodmardi E, et al. Nurr1 Is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 2009;29:15923-15932.

    CAS  PubMed  Google Scholar 

  102. Ekstrand MI, Terzioglu M, Galter D, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 2007;104:1325-1330

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Taylor TN, Caudle WM, Shepherd KR, et al. Non-motor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 2009;29:8103.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Baiguera C, Alghisi M, Pinna A, et al. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice. Brain 2012;135:2750-2765.

    PubMed  Google Scholar 

  105. Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 2009;10:519-529.

    CAS  PubMed  Google Scholar 

  106. Taylor TN, Greene JG, Miller GW. Behavioral phenotyping of mouse models of Parkinson's disease. Behav Brain Res 2010;211:1-10.

    PubMed Central  PubMed  Google Scholar 

  107. Boeve BF. Idiopathic REM sleep behaviour disorder in the development of Parkinson's disease. Lancet Neurol 2013;12:469-482.

    Google Scholar 

  108. McDowell KA, Hadjimarkou MM, Viechweg S, et al. Sleep alterations in an environmental neurotoxin-induced model of parkinsonism. Exp Neurol 2010;226:84-89.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Shannon KM, Keshavarzian A, Mutlu E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. Mov Disord 2012;27:709-715.

    PubMed  Google Scholar 

  110. Greene JG, Noorian AR, Srinivasan S. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 2009;218:154-161.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Anderson G, Noorian AR, Taylor G, et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 2007;207:4-12.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Blandini F, Balestra B, Levandis G, et al. Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson's disease. Neurosci Lett 2009;467:203-207.

    CAS  PubMed  Google Scholar 

  113. García JJ, Fernández N, Calle AP, Diez MJ, Sahagún A, Sierra M. Effects of Plantago ovata husk on levodopa (with Carbidopa) bioavailability in rabbits withautonomicgastrointestinal disorders. Drug Metab Dispos 2009;37:1434-1442.

    PubMed  Google Scholar 

  114. Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010;119:689-702.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Sakakibara R, Kishi M, Ogawa E, et al. Bladder, bowel, and sexual dysfunction in Parkinson's Disease. Parkinsons Dis 2011;924605.

  116. Sakakibara R, Uchiyama T, Yamanishi T, Shirai K, Hattori T. Bladder and bowel dysfunction in Parkinson's disease. J Neural Transm 2008;115:44-460.

    Google Scholar 

  117. Dalmose AL, Bjarkam CR, Sorensen JC, Djurhuus JC, T. M. Jorgensen. Effects of high frequency deep brain stimulation on urine storage and voiding function in conscious minipigs. Neurourol Urodyn 2004;23:265-272.

    CAS  PubMed  Google Scholar 

  118. Picillo M, Rocco M, Barone P. Dopamine receptor agonists and depression in Parkinson's disease. Parkinsonism Relat Disord 2009;15(Suppl. 4):S81-84.

    PubMed  Google Scholar 

  119. Ghorpade S, Tripathi R, Sonawane D, Manjrekar N. Evaluation of antidepressant activity of ropinirole coadministered with fluoxetine in acute and chronic behavioral models of depression in rats. J Basic Clin Physiol Pharmacol 2011;22:109-114.

    CAS  PubMed  Google Scholar 

  120. Kohl Z, Winner B, Ubhi K, et al. Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci 2012;35:10-19.

    PubMed Central  PubMed  Google Scholar 

  121. Ciobica A, Padurariu M, Hritcu L. The effects of short-term nicotine administration on behavioral and oxidative stress deficiencies induced in a rat model of Parkinson's disease. Psychiatr Danub 2012;24:194-205.

    PubMed  Google Scholar 

  122. Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson's disease. J Physiol Biochem 2012;68:59-69.

    CAS  PubMed  Google Scholar 

  123. Chao OY, Mattern C, Silva AM, et al. Intranasally applied L-DOPA alleviates parkinsonian symptoms in rats with unilateral nigro-striatal6-OHDA lesions. Brain Res Bull 2012;87:340-345.

    CAS  PubMed  Google Scholar 

  124. Ren T, Yang X, Wu N, Cai Y, Liu Z, Yuan W. Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats. Neurosci Lett 2011;502:117-122.

    CAS  PubMed  Google Scholar 

  125. Naidu Y, Chaudhuri KR. Transdermal rotigotine: a new non-ergot dopamine agonist for the treatment of Parkinson's disease. Expert Opin Drug Deliv 2007;4:111-118.

    CAS  PubMed  Google Scholar 

  126. Steiger M. Constant dopaminergic stimulation by transdermal delivery of dopaminergic drugs: a new treatment paradigm in Parkinson's disease. Eur J Neurol 2008;15:6-15.

    CAS  PubMed  Google Scholar 

  127. Sanford M, Scott LJ. Spotlight on rotigotine transdermal patch in Parkinson's disease. Drugs Aging 2011;28:1015-1017.

    PubMed  Google Scholar 

  128. Stockwell KA, Virley DJ, Perren M, et al. Continuous delivery of ropinirole reverses motor deficits without dyskinesia induction in MPTP-treated common marmosets. Exp Neurol 2008;211:172-179.

    CAS  PubMed  Google Scholar 

  129. Monville C, Torres EM, Dunnett SB. Validation of the l-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Res Bull 2005;68:16-23.

    CAS  PubMed  Google Scholar 

  130. Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 2008;23:1860-1866.

    PubMed Central  PubMed  Google Scholar 

  131. Paquette MA, Anderson AM, Lewis JR, Meshul CK, Johnson SW, Paul Berger S. MK-801 inhibits L-DOPA-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology 2010;58:1002-1008.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, Chase TN. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol 2005;196:422-429.

    CAS  PubMed  Google Scholar 

  133. Dekundy A, Gravius A, Hechenberger M, et al. Pharmacological characterization of MRZ-8676, a novel negative allosteric modulator of subtype 5 metabotropic glutamate receptors (mGluR5): focus on L-DOPA-induced dyskinesia. J Neural Transm 2011;118:1703-1716.

    CAS  PubMed  Google Scholar 

  134. Berg D, Godau J, Trenkwalder C, et al. AFQ056 treatment of levodopa-induced dyskinesias: Results of 2 randomized controlled trials. Mov Disord 2011;26:1243-1250.

    PubMed  Google Scholar 

  135. Jones CK, Bubser M, Thompson AD, et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease. J Pharmacol Exp Ther 2012;340:404-421.

    CAS  PubMed  Google Scholar 

  136. Kachroo A, Schwarzschild MA. Adenosine A(2A) receptor gene disruption protects in an α-synuclein model of Parkinson's disease. Ann Neurol 2012;71:278-282.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Marcellino D, Lindqvist E, Schneider M, et al. Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiol Dis 2010;40:460-466.

    CAS  PubMed  Google Scholar 

  138. Buck K, Ferger B. The selective alpha1 adrenoceptor antagonist HEAT reduces L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Synapse 2010;64:117-126.

    CAS  PubMed  Google Scholar 

  139. Dupre KB, Eskow KL, Negron G, Bishop C. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 2007;1158:135-143.

    CAS  PubMed  Google Scholar 

  140. Takuma K, Tanaka T, Takahashi T, et al. Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induceddyskinesia in hemi-Parkinsonian rats. Eur J Pharmacol 2012;683:166-173.

    CAS  PubMed  Google Scholar 

  141. Guan Q, Liu X, He Y, Jin L, Zhao L. Effect of cdk5 antagonist on L-dopa-induced dyskinesias in a rat model of Parkinson's disease. Int J Neurosci 2010;120:421-427.

    CAS  PubMed  Google Scholar 

  142. Billet F, Costentin J, Dourmap N. Influence of corticostriatal δ-opioid receptors on abnormal involuntary movements induced by L-DOPA in hemiparkinsonian rats. Exp Neurol 2012; 236:339-350.

    CAS  PubMed  Google Scholar 

  143. Bonilla E, Medina-Leendertz S, Villalobos V, Molero L, Bohórquez A. Paraquat-induced oxidative stress in drosophila melanogaster: effects of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid. Neurochem Res 2006;31:1425-1432.

    CAS  PubMed  Google Scholar 

  144. Kaur H, Chauhan S, Sandhir R. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson's disease. Neurochem Res 2011;36:1435-1443.

    CAS  PubMed  Google Scholar 

  145. Verma R, Nehru B. Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson's disease. Neurochem Int 2009;55:369-375.

    CAS  PubMed  Google Scholar 

  146. Sameri MJ, Sarkaki A, Farbood Y, Mansouri SM. Motor disorders and impaired electrical power of pallidal EEG improved by gallic acid in animalmodel of Parkinson's disease. Pak J Biol Sci 2011;14:1109-1116.

    CAS  PubMed  Google Scholar 

  147. Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry 2007;62:1353-1362.

    CAS  PubMed  Google Scholar 

  148. Fernández M, Negro S, Slowing K, Fernández-Carballido A, Barcia E. An effective novel delivery strategy of rasagiline for Parkinson's disease. Int J Pharm 2011;419:271-280.

    PubMed  Google Scholar 

  149. Zhu W, Xie W, Pan T, et al. Comparison of neuroprotective and neurorestorative capabilities of rasagiline and selegiline against lactacystin induced nigrostriatal dopaminergic degeneration. J Neurochem 2008;105:1970-1978.

    CAS  PubMed  Google Scholar 

  150. Burke WJ, Kumar VB, Pandey N, et al. Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 2008;115:193-203.

    CAS  PubMed  Google Scholar 

  151. Jenner P, Langston JW. Explaining ADAGIO: A critical review of the biological basis for the clinical effects of rasagiline. Mov Disord. 2011;26:2316-2323.

    PubMed  Google Scholar 

  152. Okun MS, Lang A, Jankovic J. Reply: Based on the available randomized trial patients should say no to glutathione for Parkinson's disease. Mov Disord 2010;25:961-962

    PubMed  Google Scholar 

  153. Yu X, He GR, Sun L, Lan X, Shi LL, Xuan ZH, Du GH. Assessment of the treatment effect of baicalein on a model of Parkinsonian tremor and elucidation of the mechanism. Life Sci 2012;91:5-13.

    CAS  PubMed  Google Scholar 

  154. Li XX, He GR, Mu X, et al. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol 2012;674:227-233.

    CAS  PubMed  Google Scholar 

  155. Dranka BP, Gifford A, Ghosh A, et al. Diapocynin prevents early Parkinson's disease symptoms in the leucine-rich repeat kinase 2 (LRRK2-R1441G) transgenic mouse. Neurosci Lett 2013;S0304-3940.

  156. Lv C, Hong T, Yang Z, et al. Effect of quercetin in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. Evid Based Complement Alternat Med 2012;2012:928643.

    PubMed Central  PubMed  Google Scholar 

  157. Quirk BJ, Desmet KD, Henry M, et al. Therapeutic effect of near infrared (NIR) light on Parkinson's disease models. Front Biosci (Elite Ed) 2012;4:818-823.

    Google Scholar 

  158. Masliah E, Rockenstein E, Mante M, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synucleintransgenic model of Lewy body disease. PLoS One 2011;6:e19338.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Kim YH, Rane A, Lussier S, Andersen JK. Lithium protects against oxidative stress-mediated cell death in α-synuclein-overexpressing in vitro and in vivo models of Parkinson's disease. J Neurosci Res 2011;89:1666-1675.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Myöhänen TT, Hannula MJ, Van Elzen R, et al. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease. Br J Pharmacol 2012;166:1097-1113.

    PubMed  Google Scholar 

  161. Hung LW, Villemagne VL, Cheng L, et al. The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. J Exp Med 2012;209:837-854.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Lee KW, Chen W, Junn E, et al. Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J Neurosci 2011;31:6963-6971.

    CAS  PubMed  Google Scholar 

  163. Stefanova N, Fellner L, Reindl M, et al. Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol 2011; 179:954-963.

    CAS  PubMed  Google Scholar 

  164. Liu Z, Hamamichi S, Lee BD et al. Inhibitors of LRRK2 kinase attenuate neurodegenerationand Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson's disease models. Hum Mol Genet 2011;20:3933-3942.

    CAS  PubMed  Google Scholar 

  165. Le W, Xu PY, Jiang H, et al. Mutations in NR4A2 associated with familial Parkinson’s disease. Nat Genet2003;33:85-89.

    CAS  PubMed  Google Scholar 

  166. Hintermann S, Chiesi M, von Krosigk U, et al. Identification of a series of highly potent activators of the Nurr1 signaling pathway Bioorg Med Chem Lett 2007;17:193-196.

    CAS  PubMed  Google Scholar 

  167. Anderson E, Saltó C, Villaescusa JC, et al. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells PNAS 2013;E602-E610.

  168. L’Episcopo F,Tirolo C,Testa N, et al. Plasticity of Subventricular Zone Neuroprogenitors in MPTP (methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse of Parkinson’s disease involves cross talk between inflammatory and Wnt/-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci 2012;32:2062-2085

    PubMed Central  PubMed  Google Scholar 

  169. Steidinger TU, Standaert DG, Yacoubian TA. A neuroprotective role for angiogenin in models of Parkinson's disease. J Neurochem 2011;116:334-341.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Zhou H, Chen J, Lu X, et al. Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells. J Pineal Res 2012;52:120-127.

    CAS  PubMed  Google Scholar 

  171. Donmez G, Arun A, Chung CY, et al. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 2012;32:124-132.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Wu Y, Li X, Zhu JX, et al. Resveratrol-activated AMPK/SIRT1/Autophagy in cellular models of Parkinson's disease. Neurosignals 2011;19:163-174.

    CAS  PubMed  Google Scholar 

  173. Mangano EN, Peters S, Litteljohn D, et al. Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson's disease. Neurbiol Dis 2011;43:99-112.

    CAS  Google Scholar 

  174. Ono K, Ikemoto M, Kawarabayashi T, et al. A chemical chaperone, sodium 4-phenylbutyric acid, attenuates the pathogenic potency in human alpha-synuclein A30P + A53T transgenic mice. Parkinsonism Relat Disord 2009;15:649-654.

    PubMed  Google Scholar 

  175. Roy A, Ghosh A, Jana A, et al. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease. PLoS One. 2012;7:e38113.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Carbone M, Duty S, Rattray M. Riluzole neuroprotection in a Parkinson's disease model involves suppression of reactive astrocytosis but not GLT-1 regulation. BMC Neurosci 2012;5:13:38.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Tasaki Y, Yamamoto J, Omura T, et al. Meloxicam ameliorates motor dysfunction and dopaminergic neurodegeneration by maintaining Akt-signaling in a mouse Parkinson’s disease model. Neurosci Lett 2012;521:15-19.

    CAS  PubMed  Google Scholar 

  178. Xiong N, Xiong J, Khare G, et al. Edaravone guards dopamine neurons in a rotenone model for Parkinson's disease. PLoS One. 2011;6:e20677.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Gerhardt E, Gräber S, Szego EM, et al. Idebenone and resveratrol extend lifespan and improve motor function of HtrA2 knockout mice. PLoS One 2011;6:e28855.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Takeuchi H, Yanagida T, Inden M, et al. Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models. J Neurosci Res. 2009;87:576-585.

    CAS  PubMed  Google Scholar 

  181. Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain Res Bull 2011;85:380-384.

    CAS  PubMed  Google Scholar 

  182. Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, et al. A blood-brain barrier (BBB) disrupter is Also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J Biol Chem 2013;288:17579-17588.

    CAS  PubMed  Google Scholar 

  183. Greco B, Lopez S, van der Putten H, et al. Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson's disease. J Pharmacol Exp Ther 2010;332:1064-1071.

    Google Scholar 

  184. Niswender CM, Johnson KA, Weaver CD, et al. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric molulators of metabotropic glutamate receptor 4. Mol Pharmacol 2008;74:1345-1358.

    Google Scholar 

  185. Austin PJ, Betts MJ, Broadstock M, et al. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease. Br J Pharmacol 2010;160:1741-1753.

    Google Scholar 

Download references

Acknowledgments

Writing of this article was supported by the Diana Helis Henry Medical Research Foundation. Full conflict of interest disclosures are available in the electronic supplementary material for this article.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Jankovic.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, W., Sayana, P. & Jankovic, J. Animal Models of Parkinson’s Disease: A Gateway to Therapeutics?. Neurotherapeutics 11, 92–110 (2014). https://doi.org/10.1007/s13311-013-0234-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0234-1

Keywords

Navigation