Epigenetic Regulation of Axon Outgrowth and Regeneration in CNS Injury: The First Steps Forward

Abstract

Inadequate axonal sprouting and lack of regeneration limit functional recovery following neurologic injury, such as stroke, brain, and traumatic spinal cord injury. Recently, the enhancement of the neuronal regenerative program has led to promising improvements in axonal sprouting and regeneration in animal models of axonal injury. However, precise knowledge of the essential molecular determinants of this regenerative program remains elusive, thus limiting the choice of fully effective therapeutic strategies. Given that molecular regulation of axonal outgrowth and regeneration requires carefully orchestrated waves of gene expression, both temporally and spatially, epigenetic changes may be an ideal regulatory mechanism to address this unique need. While recent evidence suggests that epigenetic modifications could contribute to the regulation of axonal outgrowth and regeneration following axonal injury in models of stroke, and spinal cord and optic nerve injury, a number of unanswered questions remain. Such questions require systematic investigation of the epigenetic landscape between regenerative and non-regenerative conditions for the potential translation of this knowledge into regenerative strategies in human spinal and brain injury, as well as stroke.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006;7: 617-627.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Di Giovanni S. Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opin Ther Targets 2009;13:1387-1398.

    PubMed  Article  Google Scholar 

  3. 3.

    Neumann S, Woolf CJ Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 2999;23:83-91.

    Article  Google Scholar 

  4. 4.

    Teng FY, Tang BL. Axonal regeneration in adult CNS neurons—signaling molecules and pathways. J Neurochem 2006;96:1501-1508.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Merkler D, Lindner R, Puttagunta R, Di Giovanni S. Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 2001;21:3665-3673.

    Google Scholar 

  6. 6.

    Fernandes KJ, Fan DP, Tsui BJ, Cassar SL, Tetzlaff W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp Neurol 1999;414:495-510.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Saruhashi Y, Young W, Perkins R. The recovery of 5-HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection. Exp Neurol 1996;139:203-213.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Camand E, Morel MP, Faissner A, Sotelo C, Dusart I. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Eur J Neurosci 2004;20:1161-1176.

    PubMed  Article  Google Scholar 

  9. 9.

    Tetzlaff W, Zwiers H, Lederis K, Cassar L, Bisby MA. Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat. J Neurosci 1989;9:1303-1313.

    PubMed  CAS  Google Scholar 

  10. 10.

    Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 2003;38:187-199.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Gris P, Murphy S, Jacob JE, Atkinson I, Brown A. Differential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords. Mol Cell Neurosci 2003;24:555-567.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Tetzlaff W, Lindner R, Puttagunta R, Di Giovanni S. Response of rubrospinal and corticospinal neurons to injury and neurotrophins. Prog Brain Res 1994;103:271-286.

    Google Scholar 

  13. 13.

    Hendriks WT, Lindner R, Puttagunta R, Di Giovanni S. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat. J Neurotrauma 2006;23:18-35.

    Google Scholar 

  14. 14.

    Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002;177:265-275.

    Google Scholar 

  15. 15.

    Tobias CA, Lindner R, Puttagunta R, Di Giovanni S. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 2003;184:97-113.

    Google Scholar 

  16. 16.

    Tetzlaff W, Alexander SW, Miller FD, Bisby MA. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 1991;11:2528-2544.

    PubMed  CAS  Google Scholar 

  17. 17.

    Miller FD, Tetzlaff W, Bisby MA, Fawcett JW, Milner RJ. Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha 1, during nerve regeneration in adult rats. J Neurosci 1989;9:1452-1463.

    PubMed  CAS  Google Scholar 

  18. 18.

    McGraw J, Lindner R, Puttagunta R, Di Giovanni S. Galectin-1 expression correlates with the regenerative potential of rubrospinal and spinal motoneurons. Neuroscience 2004;128:713-719.

    Google Scholar 

  19. 19.

    Jenkins R, Tetzlaff W, Hunt SP. Differential expression of immediate early genes in rubrospinal neurons following axotomy in rat. Eur J Neurosci 1993;5:203-209.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Alonso G, Ridet JL, Oestreicher AB, Gispen WH, Privat A. B-50 (GAP-43) immunoreactivity is rarely detected within intact catecholaminergic and serotonergic axons innervating the brain and spinal cord of the adult rat, but is associated with these axons following lesion. Exp Neurol 1995;134:35-48.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Storer PD, Houle JD. betaII-tubulin and GAP 43 mRNA expression in chronically injured neurons of the red nucleus after a second spinal cord injury. Exp Neurol 2003;183:537-547.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Storer PD, Dolbeare D, Houle JD. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res 2003;74:502-511.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Wong LF, Lindner R, Puttagunta R, Di Giovanni S. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 2006;9:243-250.

    Google Scholar 

  24. 24.

    Liu K, Lindner R, Puttagunta R, Di Giovanni S. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010;13:1075-1081.

    Google Scholar 

  25. 25.

    Imamura T, Lindner R, Puttagunta R, Di Giovanni S. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 2004;322:593-600.

    Google Scholar 

  26. 26.

    Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15:R17-29.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010;1338: 20-35.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Ma DK, Lindner R, Puttagunta R, Di Giovanni S. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010;13:1338-1344.

    Google Scholar 

  29. 29.

    Kunej T, Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 2011;717:77-84.

    Google Scholar 

  30. 30.

    Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Berger SL. The complex language of chromatin regulation during transcription. Nature 2007;447:407-412.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kiefer JC. Epigenetics in development. Dev Dyn 2007;236:1144-1156.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet 2010;70:101-141.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Tucker KL. Methylated cytosine and the brain: a new base for neuroscience. Neuron 2001;30:649-652.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 2009;89:67-84.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Day JJ, Sweatt JD. DNA methylation and memory formation. Nat Neurosci 2010;13:1319-1323.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Sharma RP, Grayson DR, Guidotti A, Costa E. Chromatin, DNA methylation and neuron gene regulation—the purpose of the package. J Psychiatry Neurosci 2005;30:257-263.

    PubMed  Google Scholar 

  38. 38.

    Gaub P, Lindner R, Puttagunta R, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010;17:1392-1408.

    Google Scholar 

  39. 39.

    Gaub P, Lindner R, Puttagunta R, Di Giovanni S. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 2011;134:2134-2148.

    Google Scholar 

  40. 40.

    Iskandar BJ, Lindner R, Puttagunta R, Di Giovanni S. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest 2010;120:1603-1616.

    Google Scholar 

  41. 41.

    Kiryu-Seo S, Kiyama H. The nuclear events guiding successful nerve regeneration. Front Mol Neurosci 2011;4:53.

    PubMed  Article  Google Scholar 

  42. 42.

    Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012;5:24.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Mellor, J. Dynamic nucleosomes and gene transcription. Trends Genet 2006;22:320-329.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007;26:5310-5318.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J 2006;273:3121-3135.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447:425-432.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Laurent L, Lindner R, Puttagunta R, Di Giovanni S. Dynamic changes in the human methylome during differentiation. Genome Res 2010;20:320-331.

    Google Scholar 

  48. 48.

    Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11:607-620.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Lister R, Lindner R, Puttagunta R, Di Giovanni S. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-322.

    Google Scholar 

  50. 50.

    Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics 1992;13:1095-1107.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6-21.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Illingworth R, Lindner R, Puttagunta R, Di Giovanni S. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 2008;6: e22.

  53. 53.

    Illingworth RS, Lindner R, Puttagunta R, Di Giovanni S. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 2010;6:e1001134.

    Google Scholar 

  54. 54.

    Maunakea AK, Lindner R, Puttagunta R, Di Giovanni S. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010;466:253-257.

    Google Scholar 

  55. 55.

    Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 1993;90:11995-11999.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006;103:1412-1417.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Weber M, Lindner R, Puttagunta R, Di Giovanni S. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007;39:457-466.

    Google Scholar 

  58. 58.

    Lewis JD, Lindner R, Puttagunta R, Di Giovanni S. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992;69:905-914.

    Google Scholar 

  59. 59.

    Amir RE, Lindner R, Puttagunta R, Di Giovanni S. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185-188.

    Google Scholar 

  60. 60.

    Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009;118:549-565.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Nan X, Lindner R, Puttagunta R, Di Giovanni S. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998;393:386-389.

    Google Scholar 

  62. 62.

    Boeke J, Ammerpohl O, Kegel S, Moehren U, Renkawitz R. The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A. J Biol Chem 2000;275:34963-34967.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Fournier A, Sasai N, Nakao M, Defossez PA. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics 2012;11:251-264.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Watson P, Lindner R, Puttagunta R, Di Giovanni S. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J Med Genet 2001;38:224-228.

    Google Scholar 

  65. 65.

    Chahrour M, Lindner R, Puttagunta R, Di Giovanni S. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008;320:1224-1229.

    Google Scholar 

  66. 66.

    Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 2011;33:1563-1574.

    Article  Google Scholar 

  67. 67.

    Samaco RC, Neul JL. Complexities of Rett Syndrome and MeCP2. J Neurosci 2011;31:7951-7959.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    McGraw CM, Samaco RC, Zoghbi HY. Adult neural function requires MeCP2. Science 2011;333:186.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11:115-124.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Nagai K, Miyake K, Kubota T. A transcriptional repressor MeCP2 causing Rett syndrome is expressed in embryonic non-neuronal cells and controls their growth. Brain Res Dev Brain Res 2005;157:103-106.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009;29:5051-5061.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Tochiki KK, Cunningham J, Hunt SP, Geranton SM. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Mol Pain 2012;8:14.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Li W, Calfa G, Larimore J, Pozzo-Miller L. Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci U S A 2012;109:17087-17092.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Martinowich K, Lindner R, Puttagunta R, Di Giovanni S. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003;302:890-893.

    Google Scholar 

  75. 75.

    Zocchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012;7:695-700.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Khoshnan A, Patterson PH. Elevated IKKalpha accelerates the differentiation of human neuronal progenitor cells and induces MeCP2-dependent BDNF expression. PLoS One 2012;7:e41794.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Chen WG, Lindner R, Puttagunta R, Di Giovanni S. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003;302:885-889.

    Google Scholar 

  78. 78.

    Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 2008;28:10576-10586.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Gao Y, Lindner R, Puttagunta R, Di Giovanni S. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 2004;44:609-621.

    Google Scholar 

  80. 80.

    Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 2008;209:321-332.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Kishi N, Macklis JD. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 2004;27:306-321.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Hong EJ, West AE, Greenberg ME. Transcriptional control of cognitive development. Curr Opin Neurobiol 2005;15:21-28.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 2010;12:127-134.

    PubMed  Article  Google Scholar 

  84. 84.

    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-257.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Watanabe D, Uchiyama K, Hanaoka K. Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 2006;142:727-737.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Endres M, Lindner R, Puttagunta R, Di Giovanni S. DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 2000;20:3175-3181.

    Google Scholar 

  87. 87.

    Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 2005;79:734-746.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Chestnut BA, Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 2011;31:16619-16636.

    Google Scholar 

  89. 89.

    Tawa R, Ono T, Kurishita A, Okada S, Hirose S. Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation 1990;45:44-48.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Goto K, Lindner R, Puttagunta R, Di Giovanni S. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 1994;56:39-44.

    Google Scholar 

  91. 91.

    Brooks PJ, Marietta C, Goldman D. DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci 1996;16:939-945.

    PubMed  CAS  Google Scholar 

  92. 92.

    Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 2007;53:857-869.

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Meaney MJ, Ferguson-Smith AC. Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 2010;13:1313-1318.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Dulac C. Brain function and chromatin plasticity. Nature 2010;465:728-735.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory. Mol Brain 2011;4:5.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Kronenberg G, Colla M, Endres M. Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 2009;9:315-323.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Barreto G, Lindner R, Puttagunta R, Di Giovanni S. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007;445:671-675.

    Google Scholar 

  98. 98.

    Befort K, Karchewski L, Lanoue C, Woolf CJ. Selective up-regulation of the growth arrest DNA damage-inducible gene Gadd45 alpha in sensory and motor neurons after peripheral nerve injury. Eur J Neurosci 2003;18:911-922.

    PubMed  Article  Google Scholar 

  99. 99.

    Wang Z, Lindner R, Puttagunta R, Di Giovanni S. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008;40:897-903.

    Google Scholar 

  100. 100.

    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-395.

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000;64:435-459.

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669-681.

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 2007;26:5528-5540.

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-1080.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Xu W, Edmondson DG, Roth SY. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 1998;18:5659-5669.

    PubMed  CAS  Google Scholar 

  106. 106.

    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996;87:953-959.

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Wallberg AE, Pedersen K, Lendahl U, Roeder RG. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002;22:7812-7819.

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Jin Q, Lindner R, Puttagunta R, Di Giovanni S. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011;30:249-262.

    Google Scholar 

  109. 109.

    Maurice T, Lindner R, Puttagunta R, Di Giovanni S. Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology 2008;33:1584-1602.

    Google Scholar 

  110. 110.

    Wong K, Lindner R, Puttagunta R, Di Giovanni S. Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases. J Biol Chem 2004;279:55667-55674.

    Google Scholar 

  111. 111.

    Xenaki G, Lindner R, Puttagunta R, Di Giovanni S. PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 2008;27:5785-5796.

    Google Scholar 

  112. 112.

    Herdegen T, Skene P, Bahr M. The c-Jun transcription factor—bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997;20:227-231.

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Di Giovanni S, Lindner R, Puttagunta R. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 2006;25:4084-4096.

    Google Scholar 

  114. 114.

    Song CZ, Keller K, Chen Y, Stamatoyannopoulos G. Functional interplay between CBP and PCAF in acetylation and regulation of transcription factor KLF13 activity. J Mol Biol 2003;329:207-215.

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Sharma A, Lindner R, Puttagunta R, Di Giovanni S. The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 1999;19:704-713.

    Google Scholar 

  116. 116.

    Guan Z, Lindner R, Puttagunta R, Di Giovanni S. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 2002;111:483-493.

    Google Scholar 

  117. 117.

    Buschmann T, Lindner R, Puttagunta R, Di Giovanni S. Expression of Jun, Fos, and ATF-2 proteins in axotomized explanted and cultured adult rat dorsal root ganglia. Neuroscience 1998;84:163-176.

    Google Scholar 

  118. 118.

    Li MY, Lindner R, Puttagunta R, Di Giovanni S. Dramatic co-activation of WWOX/WOX1 with CREB and NF-kappaB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One 2009;4:e7820.

    Google Scholar 

  119. 119.

    Laherty CD, Lindner R, Puttagunta R, Di Giovanni S. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997;89:349-356.

    Google Scholar 

  120. 120.

    Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 2000;16:351-356.

    PubMed  Article  CAS  Google Scholar 

  121. 121.

    McDonel P, Costello I, Hendrich B. Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development. Int J Biochem Cell Biol 2009;41:108-116.

    PubMed  Article  CAS  Google Scholar 

  122. 122.

    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004;101:16659-16664.

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Soriano FX, Hardingham GE. In cortical neurons HDAC3 activity suppresses RD4-dependent SMRT export. PLoS One 2011;6:e21056.

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Puttagunta R, Lindner R, Puttagunta R, Di Giovanni S. RA-RAR-{beta} counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. J Cell Biol 2011;193:1147-1156.

    Google Scholar 

  125. 125.

    Chen Y, Lindner R, Puttagunta R, Di Giovanni S. HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat Neurosci 2011;14:437-441.

    Google Scholar 

  126. 126.

    Rivieccio MA, Lindner R, Puttagunta R, Di Giovanni S. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A 2009;106:19599-19604.

    Google Scholar 

  127. 127.

    Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 2008;86:305-341.

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Lockett GA, Wilkes F, Maleszka R. Brain plasticity, memory and neurological disorders: an epigenetic perspective. Neuroreport 2010;21:909-913.

    PubMed  Article  Google Scholar 

  129. 129.

    Tsankova NM, Lindner R, Puttagunta R, Di Giovanni S. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519-525.

    Google Scholar 

  130. 130.

    Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 2009;16:543-554.

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Floriddia EM, Lindner R, Puttagunta R, Di Giovanni S. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury. J Neurosci 2012;32:13956-13970.

  132. 132.

    Tedeschi A, Lindner R, Puttagunta R, Di Giovanni S. The tumor suppressor p53 transcriptionally regulates cGKI expression during neuronal maturation and is required for cGMP-dependent growth cone collapse. J Neurosci 2009;29:15155-15160.

    Google Scholar 

  133. 133.

    Rishal I, Fainzilber M. Retrograde signaling in axonal regeneration. Exp Neurol 2009;223:5-10.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Hertie Foundation, the DFG (grant DI140731), and Wings for Life for their financial support.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simone Di Giovanni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2411 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindner, R., Puttagunta, R. & Di Giovanni, S. Epigenetic Regulation of Axon Outgrowth and Regeneration in CNS Injury: The First Steps Forward. Neurotherapeutics 10, 771–781 (2013). https://doi.org/10.1007/s13311-013-0203-8

Download citation

Keywords

  • Epigenetics
  • Axonal regeneration
  • Histone modifications
  • DNA methylation
  • Spinal cord injury
  • Optic nerve crush