Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72:971-983.
Article
Google Scholar
Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features. J Neurochem 2010;113:1073-1091.
CAS
PubMed
Google Scholar
Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985;44:559-577.
CAS
Article
PubMed
Google Scholar
Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, et al. Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 1995;10:104-110.
CAS
Article
PubMed
Google Scholar
La Spada AR, Fu YH, Sopher BL, et al. Polyglutamine¬expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 2001;31: 913-927.
Article
PubMed
Google Scholar
Yoo SY, Pennesi ME, Weeber EJ, et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 2003;37:383-401
CAS
Article
PubMed
Google Scholar
Jafar-Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploin sufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci USA 2011;108:2142-2147.
CAS
Article
PubMed
Google Scholar
Harjes P, Wanker EE. The hunt for huntingtin function; interaction partners tell many different stories. Trends Biochem Sci 2003;28:425-433.
CAS
Article
PubMed
Google Scholar
Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci USA 2003;100:9578-9583.
CAS
Article
PubMed
Google Scholar
Yanai A, Huang K, Kang R, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006;9:824-831.
CAS
Article
PubMed
Google Scholar
Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009;324:1327-1330.
CAS
Article
PubMed
Google Scholar
Subramaniam S, Snyder SH. Huntington's disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology 2011;60:1187-1192.
CAS
Article
PubMed
Google Scholar
Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009;187:761-772.
CAS
Article
PubMed
Google Scholar
Sambataro F, Pennuto M. Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Prog Neurobiol 2011. doi:10.1016/j.pneurobio.2011.10.003.
Gu X, Li C, Wei W, et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005;46:433-444.
CAS
Article
PubMed
Google Scholar
Gu X, Andre VM, Cepeda C, et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol Neurodegener 2007;2:8.
Article
PubMed
CAS
Google Scholar
Crook ZR, Housman D. Huntington's disease: can mice lead the way to treatment? Neuron 2011;69:423-435.
CAS
Article
PubMed
Google Scholar
Ouimet CC, Langley-Guillon KC, Greengard P. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 1998;808:8-12.
CAS
Article
PubMed
Google Scholar
Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011;198:252-273.
CAS
Article
PubMed
Google Scholar
Igarashi S, Morita H, Bennett KM, et al. Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. Neuroreport 2003;14:565-568.
CAS
Article
PubMed
Google Scholar
Ehrlich ME, Conti L, Toselli M, et al. ST14A cells have properties of a medium-size spiny neuron. Exp Neurol 2001;167:215-226.
CAS
Article
PubMed
Google Scholar
Sipione S, Rigamonti D, Valenza M, et al. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 2002;11:1953-1965.
CAS
Article
PubMed
Google Scholar
Trettel F, Rigamonti D, Hilditch-Maguire P, et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 2000;9:2799-2809.
CAS
Article
PubMed
Google Scholar
Ruiz M, Déglon N.Viral-mediated overexpression of mutant huntingtin to model HD in various species. Neurobiol Dis 2011. doi:10.1016/j.nbd.2011.08.023.
Brown TB, Bogush AI, Ehrlich ME. Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet 2008;17:3095-3104.
CAS
Article
PubMed
Google Scholar
Cantle JP, Wang N, Gray M, et al. Genetic and molecular analyses of non-cell-autonomous disease pathogenesis in a conditional BAC transgenic mouse model of Huntington’s disease (BACHD). SFN Annual Meeting 2011:148.21.
Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003;19:233-238.
CAS
Article
PubMed
Google Scholar
Desplats PA, Kass KE, Gilmartin T, et al. Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease. J Neurochem 2006;96:743-757.
CAS
Article
PubMed
Google Scholar
Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3’: 5’-monophosphate- regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 1984;4:111-124.
CAS
Google Scholar
Bibb JA, Yan Z, Svenningsson P, et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington‘s disease mice. Proc Natl Acad Sci USA 2000;97:6809-6814.
CAS
Article
PubMed
Google Scholar
Menalled LB, Sison JD, Wu Y, et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. J Neurosci 2002;22:8266-8276.
CAS
PubMed
Google Scholar
Van Raamsdonk JM, Pearson J, Rogers DA, et al. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum Mol Genet 2005;14:1379-1392.
Article
PubMed
CAS
Google Scholar
Tallaksen-Greene SJ, Crouse AB, Hunter JM, Detloff PJ, Albin RL. Neuronal intranuclear inclusions and neuropil aggregates in HdhCAG(150) knockin mice. Neuroscience 2005;131:843-852.
CAS
PubMed
Google Scholar
Zeron MM, Hansson O, Chen N, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 2002;33:849-860.
CAS
Article
PubMed
Google Scholar
Gines S, Ivanova E, Seong IS, Saura CA, MacDonald ME. Enhanced Akt signaling is an early pro-survival response that reflects N-Methyl-D-aspartate receptor activation in Huntington's disease knock-in striatal cells. J Biol Chem 2003;278:50514-50522.
CAS
Article
PubMed
Google Scholar
Gines S, Seong IS, Fossale E, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet 2003;12:497-508.
CAS
Article
PubMed
Google Scholar
Cowan CM, Fan MM, Fan J, et al. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J Neurosci 2008;28:12725-12735.
CAS
Article
PubMed
Google Scholar
de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglytamine repeat size, huntingtin expression levels, and protein length. J Neurosci 2002;22:3473-3483.
PubMed
Google Scholar
Regulier E, Trottier Y, Perrin V, Aebischer P, Deglon N. Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 2003;12:2827-2836.
CAS
Article
PubMed
Google Scholar
DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104:17204-17209.
CAS
Article
PubMed
Google Scholar
Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 2009;65:276-285.
CAS
Article
PubMed
Google Scholar
Zala D, Benchoua A, Brouillet E, et al. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiol Dis 2005;20:785-798.
CAS
Article
PubMed
Google Scholar
Bogush AI, McCarthy LE, Tian C, et al. DARPP-32 genomic fragments drive Cre expression in postnatal striatum. Genesis 2005;42:37-46.
CAS
Article
PubMed
Google Scholar
Thomas EA, Coppola G, Tang B, et al. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genetics 2011;20:1049-1060.
CAS
Article
Google Scholar
Kim SH, Thomas CA, André VM, et al. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. ASN Neuro 2011;3:e00060.
PubMed
Google Scholar
Fossale E, Seong IS, Coser KR, et al. Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative. Hum Mol Genet 2011;20:4258-4267.
CAS
Article
PubMed
Google Scholar
Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet 1997;15:197-200.
CAS
Article
PubMed
Google Scholar
Goula AV, Berquist BR, Wilson DM 3 rd, Wheeler VC, Trottier Y, Merienne K. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 2009;5:e1000749.
Google Scholar
Lee JM, Pinto RM, Gillis T, St Claire JC, Wheeler VC. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver. PLoS One 2011;6:e23647.
CAS
Google Scholar
Watase K, Venken KJ, Sun Y, Orr HT, Zoghbi HY. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum Mol Genet 2003;12:2789-2795.
CAS
Article
PubMed
Google Scholar
Sieradzan KA Mann DM. The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol Appl Neurobiol 2001;27:1-21.
CAS
Article
PubMed
Google Scholar
Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90:537-548.
CAS
Article
PubMed
Google Scholar
Beal MF. Huntington’s disease, energy, and excitotoxicity. Neurobiol Aging 1994;15:275-276.
CAS
Article
PubMed
Google Scholar
Levine MS, Klapstein GJ, Koppel A, et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 1999;58:515-532.
CAS
Article
PubMed
Google Scholar
Grunewald T, Beal MF. Bioenergetics in Huntington’s disease. Ann NY Acad Sci 1999;893:203-213.
CAS
Article
PubMed
Google Scholar
Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 2003;3:65-94.
CAS
Article
PubMed
Google Scholar
Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 2006;75:25-71.
CAS
Article
PubMed
Google Scholar
Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 2010;33:513-523.
CAS
Article
PubMed
Google Scholar
Gourfinkel-An I, Parain K, Hartmann A, et al. Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem 2003; 86:1369-1378.
CAS
Article
PubMed
Google Scholar
Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 2001;293:493-498.
CAS
Article
PubMed
Google Scholar
Gauthier LR, Charrin BC, Borrell-Pages M, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004;118:127-138.
CAS
Article
PubMed
Google Scholar
Canals JM, Pineda JR, Torres-Peraza JF, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004;24:7727-7739.
CAS
Article
PubMed
Google Scholar
Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 2010;30:14708-14718.
CAS
Article
PubMed
Google Scholar
Trushina E, Dyer RB, Badger JD 2nd, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004;24:8195-8209.
CAS
Article
PubMed
Google Scholar
Braunstein KE, Eschbach J, Ròna-Vörös K, et al. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum Mol Genet 2010;19:4385-4398.
CAS
Article
PubMed
Google Scholar
Liévens JC, Woodman B, Mahal A, et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol Dis 2001;8:807-821.
Article
PubMed
CAS
Google Scholar
Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 2009;106:22480-22485.
CAS
Article
PubMed
Google Scholar
Bradford J, Shin JY, Roberts M, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 2010;285:10653-10661.
CAS
Article
PubMed
Google Scholar
Xiang Z, Valenza M, Cui L, et al. Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha contributes to dysmyelination in experimental models of Huntington's disease. J Neurosci 2011;31:9544-9553.
CAS
Article
PubMed
Google Scholar
Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007;10:1355-1360.
CAS
Article
PubMed
Google Scholar
Palazuelos J, Aguado T, Pazos MR, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009;132:3152-3164.
Article
PubMed
Google Scholar
Politis M, Pavese N, Tai YF, et al. Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: a multimodal imaging study. Hum Brain Mapp 2011;32:258-270.
Article
PubMed
Google Scholar
Kraft AD, Kaltenbach LS, Lo DC, Harry GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 2012;33:621.e17-33.
Google Scholar
Cepeda C, Itri JN, Flores-Hernández J, Hurst RS, Calvert CR, Levine MS. Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 2001;14:1577-1589.
CAS
Article
PubMed
Google Scholar
Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.
CAS
Article
PubMed
Google Scholar
Graham RK, Pouladi MA, Joshi P, et al. Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci 2009;29:2193-2204.
CAS
Article
PubMed
Google Scholar
Ariano MA, Wagle N, Grissell AE. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes. J Neurosci Res 2005;80:634-645.
CAS
Article
PubMed
Google Scholar
Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.
CAS
Article
PubMed
Google Scholar
Cepeda C, Cummings DM, André VM, Holley SM, Levine MS. Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro 2010;2:e00033.
Article
PubMed
CAS
Google Scholar
DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277:1990-1993.
CAS
Article
PubMed
Google Scholar
Hackam AS, Singaraja R, Zhang T, Gan L, Hayden MR. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genet 1999;8:25-33.
CAS
Article
PubMed
Google Scholar
Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004;431:805-810.
CAS
Article
PubMed
Google Scholar
Perrin V, Dufour N, Raoul C, et al. Implication of the JNK pathway in a rat model of Huntington's disease. Exp Neurol 2009;215:191-200.
CAS
Article
PubMed
Google Scholar
Hodgson JG, Agopyan N, Gutekunst CA, et al. A YAC mouse model for Huntington‘s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 1999;23:181-192.
CAS
Article
PubMed
Google Scholar
Schilling G, Becher MW, Sharp AH, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 1999;8:397-407. [Erratum in: Hum Mol Genet 1999;8:943].
Google Scholar
Havel LS, Wang CE, Wade B, Huang B, Li S, Li XJ. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation. Hum Mol Genet 2011;20:1424-1437.
CAS
Article
PubMed
Google Scholar
Gu X, Greiner ER, Mishra R, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009;64:828-840.
CAS
Article
PubMed
Google Scholar
Metzler M, Gan L, Mazarei G, et al. Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci 2010;30:14318-14329.
CAS
Article
PubMed
Google Scholar
Fienberg AA, Hiroi N, Mermelstein PG, et al. DARPP-32:regulator of the efficacy of dopaminergic neurotransmission. Science 1998;281:838-843.
CAS
Article
PubMed
Google Scholar
Slow EJ, Graham RK, Osmand AP, et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 2005;102:11402-11407.
CAS
Article
PubMed
Google Scholar
Nucifora FC Jr, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001;291:2423-2428.
CAS
Article
PubMed
Google Scholar
Zhai W, Jeong H, Cui L, Krainc D, Tjian R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2005;123:1241-1253.
CAS
Article
PubMed
Google Scholar
Jiang H, Poirier MA, Liang Y, et al. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol Dis 2006;23:543-551.
CAS
Article
PubMed
Google Scholar
Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413:739-743.
CAS
Article
PubMed
Google Scholar
Sadri-Vakili G, Cha JH. Mechanisms of disease: Histone modifications in Huntington's disease. Nat Clin Pract Neurol 2006;2:330-338.
CAS
Article
PubMed
Google Scholar
Sadri-Vakili G, Bouzou B, Benn CL, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 2007;16:1293-1306.
CAS
Article
PubMed
Google Scholar
Strand AD, Baquet ZC, Aragaki AK, et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007;27:11758-11768.
CAS
Article
PubMed
Google Scholar
Zucker B, Kama JA, Kuhn A, et al. Decreased Lin7b expression in layer 5 pyramidal neurons may contribute to impaired corticostriatal connectivity in huntington disease. J Neuropathol Exp Neurol 2010;69:880-895.
CAS
Article
PubMed
Google Scholar
Chai Y, Wu L, Griffin JD, Paulson HL. The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 2001;276:44889-44897.
CAS
Article
PubMed
Google Scholar
Dunah AW, Jeong H, Griffin A, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002;296:2238-22343.
CAS
Article
PubMed
Google Scholar
Li SH, Cheng AL, Zhou H, et al. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 2002;22:1277-1287.
CAS
Article
PubMed
Google Scholar
Zuccato C, Belyaev N, Conforti P, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease. J Neurosci 2007;27:6972-6983.
CAS
Article
PubMed
Google Scholar
Desplats PA, Lambert JR, Thomas EA. Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease. Neurobiol Dis 2008;31:298-308.
CAS
Article
PubMed
Google Scholar
Stroppolo A, Guinea B, Tian C, Sommer J, Ehrlich ME. Role of phosphatidylinositide 3-kinase in brain-derived neurotrophic factor-induced DARPP-32 expression in medium size spiny neurons in vitro. J Neurochem 2001;79:1027-1032.
CAS
Article
PubMed
Google Scholar
Charron F, Nemer M. GATA transcription factors and cardiac development. Semin Cell Dev Biol 1999 Feb;10:85-91.
CAS
Article
PubMed
Google Scholar
Runne H, Régulier E, Kuhn A, et al. Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci 2008;28:9723-9731.
CAS
Article
PubMed
Google Scholar
Ivkovic S, Polonskaia O, Farinas I, Ehrlich ME. Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium size spiny neurons: Studies in vivo and in vitro. Neuroscience 1997;79:509-516.
CAS
Article
PubMed
Google Scholar
Ivkovic S, Ehrlich ME. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neuroscience 1999;19:5409-5419.
CAS
Google Scholar
Hodges A, Strand AD, Aragaki AK, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 2006;15:965–977.
CAS
Article
PubMed
Google Scholar
Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16 Spec No. 2:R115-R123.
CAS
Article
PubMed
Google Scholar
Kuhn A, Goldstein DR, Hodges A, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 2007;6:1845-1861.
Article
CAS
Google Scholar
Luthi-Carter R, Strand A, Peters NL, et al. Decreased expression of striatal signaling genes in a mouse model of Huntington‘s disease. Hum Mol Genet 2000;9:1259-1271.
CAS
Article
PubMed
Google Scholar
Luthi-Carter R, Strand AD, Hanson SA, et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington’s disease mouse models reveal context-independent effects. Hum Mol Genet 2002;11:1927-1937.
CAS
Article
PubMed
Google Scholar
Ramanathan S, Hanley JJ, Deniau JM, Bolam JP. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 2002:22:8158-8169.
CAS
PubMed
Google Scholar
Cicchetti F, Prensa L, Wu Y, Parent A. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Rev 2000;34:80-101.
CAS
Article
PubMed
Google Scholar
Lucas EK, Markwardt SJ, Gupta S, et al. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha. J Neurosci 2010;30:7227-7735.
CAS
Article
PubMed
Google Scholar
Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 2009;11:e17.
Article
PubMed
Google Scholar
Stack C, Ho D, Wille E, et al. Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic Biol Med 2010;49:147-158.
CAS
Article
PubMed
Google Scholar
Obrietan K, Hoyt KR. CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 2004;28:791-796.
Article
CAS
Google Scholar
Qiu Z, Norflus F, Singh B, et al. Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. J Biol Chem 2006;281:16672-16680.
CAS
Article
PubMed
Google Scholar
Butler R, Bates GP. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 2006;7:784-796.
CAS
Article
PubMed
Google Scholar
Yazawa I, Hazeki N, Nakase H, Kanazawa I, Tanaka M. Histone H3 is aberrantly phosphorylated in glutamine-repeat diseases. Biochem Biophys Res Commun 2003;302:144-149.
CAS
Article
PubMed
Google Scholar
Chen-Plotkin AS, Sadri-Vakili G, Yohrling GJ, et al. Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease. Neurobiol Dis 2006;22:233-241.
CAS
Article
PubMed
Google Scholar
Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003;100:2041-2046.
CAS
Article
PubMed
Google Scholar
Gardian G, Browne SE, Choi DK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 2005;280:556-563.
CAS
PubMed
Google Scholar
Thomas EA, Coppola G, Desplats PA, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA 2008;105:15564-15569.
CAS
Article
PubMed
Google Scholar
Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003;23:9418-9427.
CAS
PubMed
Google Scholar
Gomez GT, Hu H, McCaw EA, Denovan-Wright EM. Brain-specific factors in combination with mutant huntingtin induce gene-specific transcriptional dysregulation. Mol Cell Neurosci 2006;31:661-675.
CAS
Article
PubMed
Google Scholar
Blau S, Daly L, Fienberg A, Teitelman G, Ehrlich ME. DARPP-32 promoter directs transgene expression to renal thick ascending limb of loop of Henle. Am J Physiol 1995;269:F564-F570.
CAS
PubMed
Google Scholar
Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 2006;4:349-362.
CAS
Article
PubMed
Google Scholar
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59-69.
CAS
Article
PubMed
Google Scholar
Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 1986;321:168-171.
CAS
Article
PubMed
Google Scholar
Ellison DW, Beal MF, Mazurek MF, Malloy JR, Bird ED, Martin JB. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease. Brain 1987;110(pt 6):1657-1673.
Article
PubMed
Google Scholar
DiFiglia M. Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci 1990;13:286-289.
CAS
Article
PubMed
Google Scholar
Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Neurobiol Dis 2004;17:455-461.
CAS
Article
PubMed
Google Scholar
Brouillet E, Hantraye P, Ferrante RJ, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995;92:7105-7109.
CAS
Article
PubMed
Google Scholar
Stahl WL, Swanson PD. Biochemical abnormalities in Huntington’s chorea brains. Neurology 1974;24:813-819.
CAS
PubMed
Google Scholar
Brennan WA Jr, Bird ED, Aprille JR. Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 1985;44:1948-1950.
CAS
Article
PubMed
Google Scholar
Sawa A, Wiegand GW, Cooper J, et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length dependent mitochondrial depolarization. Nat Med 1999;5:1194-1198.
CAS
Article
PubMed
Google Scholar
Tabrizi SJ, Workman J, Hart PE, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 2000;47:80-86.
CAS
Article
PubMed
Google Scholar
Panov AV, Gutekunst CA, Leavitt BR, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 2002;5:731-736.
CAS
PubMed
Google Scholar
Benchoua A, Trioulier Y, Zala D, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 2006;17:1652-1663.
CAS
Article
PubMed
Google Scholar
Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41:646-653.
CAS
Article
PubMed
Google Scholar
Parker WD Jr., Boyson SJ, Luder AS, Parks JK. Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 1990;40:1231-1234
PubMed
Google Scholar
Arenas J, Campos Y, Ribacoba R, et al. Complex I defect in muscle from patients with Huntington’s disease. Ann Neurol 1998;43:397-400.
CAS
Article
PubMed
Google Scholar
Shirendeb U, Reddy AP, Manczak M, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 2011;20:1438-1455.
CAS
Article
PubMed
Google Scholar
Benchoua A, Trioulier Y, Diguet E, et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 2008;17:1446-1456.
CAS
Article
PubMed
Google Scholar
Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 2009;1787:1416-1424.
CAS
Article
PubMed
Google Scholar
Hansson O, Guatteo E, Mercuri NB, et al. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the Huntington gene. Eur J Neurosci 2001;14:1492-1504.
CAS
Article
PubMed
Google Scholar
Zeron MM, Fernandes HB, Krebs C, et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004;25:469-479.
CAS
Article
PubMed
Google Scholar
Heng MY, Detloff PJ, Wang PL, Tsien JZ, Albin RL. In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci 2009;29:3200-3205.
CAS
Article
PubMed
Google Scholar
Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009;15:1407-1413.
CAS
Article
PubMed
Google Scholar
Milnerwood AJ, Gladding CM, Pouladi MA, et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 2010;65:178-190.
CAS
Article
PubMed
Google Scholar
Gascón S, Sobrado M, Roda JM, Rodríguez-Peña A, Díaz-Guerra M. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry 2008;13:99-114.
Article
PubMed
CAS
Google Scholar
Finn SF, Hyman BT, Storey E, Miller JM, Beal MF. Effects of aging on quinolinic acid lesions in rat striatum. Brain Res 1991;562:276-280.
CAS
Article
PubMed
Google Scholar
Cepeda C, Li Z, Levine MS. Aging reduces neostriatal responsiveness to N-methyl-D-aspartate and dopamine: an in vitro electrophysiological study. Neuroscience 1996;73:733-750.
CAS
Article
PubMed
Google Scholar
Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P. Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 1999;96:8727-8732.
CAS
Article
PubMed
Google Scholar
Giacomello M, Hudec R, Lopreiato R. Huntington’s disease, calcium, and mitochondria. Biofactors 2011;37:206-218.
CAS
Article
PubMed
Google Scholar
Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993;13:4181-4192.
CAS
PubMed
Google Scholar
Oliveira JM, Chen S, Almeida S, et al. Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci 2006;26:11174-11186.
CAS
Article
PubMed
Google Scholar
Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 2009;37:1147-1160.
CAS
Article
PubMed
Google Scholar
Missale C, Fiorentini C, Busi C, Collo G, Spano PF. The NMDA/D1 receptor complex as a new target in drug development. Curr Top Med Chem 2006;6:801-808.
CAS
Article
PubMed
Google Scholar
Lovinger DM. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 2010;58:951-961.
CAS
Article
PubMed
Google Scholar
Tang TS, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci 2007;227:7899-7910.
Article
CAS
Google Scholar
Deyts C, Galan-Rodriguez B, Martin E, et al. Dopamine D2 receptor stimulation potentiates PolyQ-Huntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One 2009;4:e8287.
Article
PubMed
CAS
Google Scholar
Cepeda C, Colwell CS, Itri JN, Gruen E, Levine MS. Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. Eur J Neurosci 1998;10:3491-3497.
CAS
Article
PubMed
Google Scholar
Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011;48:308-320.
CAS
Article
PubMed
Google Scholar
Iwakura Y, Nawa H, Sora I, Chao MV. Dopamine D1 receptor-induced signaling through TrkB receptors in striatal neurons. J Biol Chem 2008;283:15799-15806.
CAS
Article
PubMed
Google Scholar
Altar CA, Cai N, Bliven T, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997;389:856-860.
CAS
Article
PubMed
Google Scholar
Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1997;17:2295-2313.
CAS
PubMed
Google Scholar
Yurek DM, Hipkens SB, Wiegand SJ, Altar CA. Optimal effectiveness of BDNF for fetal nigral transplants coincides with the ontogenic appearance of BDNF in the striatum. J Neurosci 1998;18:6040-6047.
CAS
PubMed
Google Scholar
Fusco FR, Zuccato C, Tartari M, et al. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 2003;18:1093-1102.
Article
PubMed
Google Scholar
Hermel E, Gafni J, Propp SS, et al. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ 2004;11:424-438.
CAS
Article
PubMed
Google Scholar
Gines S, Bosch M, Marco S, et al. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. Eur J Neurosci 2006;23:649-658.
Article
PubMed
Google Scholar
Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 2008;18:225-238.
CAS
Article
PubMed
Google Scholar
Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004;24:4250-4258.
CAS
Article
PubMed
Google Scholar
Rauskolb S, Zagrebelsky M, Dreznjak A, et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 2010;30:1739-1749.
CAS
Article
PubMed
Google Scholar
Bogush A, Pedrini S, Pelta-Heller J, et al. AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 2007;282:7352-7359.
CAS
Article
PubMed
Google Scholar
Gharami K, Xie Y, An JJ, Tonegawa S, Xu B. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. J Neurochem 2008;105:369-379.
CAS
Article
PubMed
Google Scholar
Costantini LC, Feinstein SC, Radeke MJ, Snyder-Keller A. Compartmental expression of trkB receptor protein in the developing striatum. Neuroscience 1999;89:505-513.
CAS
Article
PubMed
Google Scholar
Koh JY, Gwag BJ, Lobner D, Choi DW. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 1995;268:573-575.
CAS
Article
PubMed
Google Scholar
Fryer HJ, Wolf DH, Knox RJ, et al. Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultures embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J Neurochem 2000;74:582-595.
CAS
Article
PubMed
Google Scholar
Hu P, Kalb RG. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. J Neurochem 2003;84:1421-1430.
CAS
Article
PubMed
Google Scholar
Mojsilovic-Petrovic J, Jeong GB, Crocker A, et al. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 2006;26:9250-9263.
CAS
Article
PubMed
Google Scholar
Domenici MR, Scattoni ML, Martire A, et al. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 2007;28:197-205
CAS
Article
PubMed
Google Scholar
Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 2007;81:331-348.
CAS
Article
PubMed
Google Scholar
Torres-Peraza JF, Giralt A, García-Martínez JM, Pedrosa E, Canals JM, Alberch J. Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2008;29:409-421.
CAS
Article
PubMed
Google Scholar
Xifró X, Giralt A, Saavedra A, et al. Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington’s disease: role in excitotoxicity. Neurobiol Dis 2009;36:461-469.
Article
PubMed
CAS
Google Scholar