Skip to main content
Log in

Evolution of the basal metabolic rate after Roux-en-Y gastric bypass: a systematic review and meta-analysis

  • Review Article
  • Published:
Updates in Surgery Aims and scope Submit manuscript

Abstract

Patients who undergo Roux-en-Y gastric bypass (RYGB) exhibit a reduction in total basal metabolic rate (BMR) after surgery, which seems to be intimately related to the amount of postoperative weight loss. The objective was to perform a systematic review and meta-analysis of the literature to determine and evaluate BMR changes after RYGB. The search was performed in certified databases, and the strategy was structured according to the PRISMA ScR. The quality evaluation of the articles included in this review was assessed with two different bias risk tools (ROBINS-I and NIH) according to each study design. Two meta-analyses were elaborated based on the results. 163 articles were selected (from 2016 to 2020), and 9 articles met the inclusion criteria. All of the selected studies evaluated only adult patients, mostly women. Postoperative BMR diminished in all of the included studies after surgery compared to preoperative values. The follow-up periods were 6, 12, 24 and 36 months. Eight articles were used for the meta-analysis after the quality assessment, a total of 434 participants. Compared to baseline values, mean postoperative reductions of 356.66 kcal/d after 6 months (p < 0.001) and 432.89 kcal/d (p < 0.001) after 1 year were observed. The BMR decreases during the first years after Roux-en-Y gastric bypass, especially during the first year postsurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BMR:

Basal metabolic rate

RYGB:

Roux-en-Y gastric bypass

References

  1. Blüher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15(5):288–298. https://doi.org/10.1038/s41574-019-0176-8. (PMID: 30814686)

    Article  PubMed  Google Scholar 

  2. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005. (Epub 2018 Sep 22 PMID: 30253139)

    Article  CAS  PubMed  Google Scholar 

  3. Arterburn DE, Telem DA, Kushner RF, Courcoulas AP (2020) Benefits and risks of bariatric surgery in adults: a review. JAMA 324(9):879–887. https://doi.org/10.1001/jama.2020.12567. (PMID: 32870301)

    Article  PubMed  Google Scholar 

  4. Mahawar KK, Sharples AJ (2017) Contribution of malabsorption to weight loss after Roux-en-Y gastric bypass: a systematic review. Obes Surg 27(8):2194–2206. https://doi.org/10.1007/s11695-017-2762-y. (PMID: 28585108)

    Article  PubMed  Google Scholar 

  5. de Cleva R, Mota FC, Gadducci AV, Cardia L, D’Andréa Greve JM, Santo MA (2018) Resting metabolic rate and weight loss after bariatric surgery. Surg Obes Relat Dis 14(6):803–807. https://doi.org/10.1016/j.soard.2018.02.026. (Epub 2018 Mar 1 PMID: 29628405)

    Article  PubMed  Google Scholar 

  6. McNab BK (2019) Whats determines the basal rate of metabolism? J Exp Biol 222(Pt15):jeb205591. https://doi.org/10.1242/jeb.205591. (PMID: 31262787)

    Article  PubMed  Google Scholar 

  7. Busetto L, Bettini S, Makaronidis J, Roberts CA, Halford JCG, Batterham RL (2021) Mechanisms of weight regain. Eur J Intern Med 93:3–7. https://doi.org/10.1016/j.ejim.2021.01.002. (Epub 2021 Jan 16 PMID: 33461826)

    Article  CAS  PubMed  Google Scholar 

  8. Soares MJ, Sheela ML, Kurpad AV, Kulkarni RN, Shetty PS (1989) The influence of different methods on basal metabolic rate measurements in human subjects. Am J Clin Nutr 50(4):731–736. https://doi.org/10.1093/acjn/50.4.731. (PMID:2508459)

    Article  CAS  PubMed  Google Scholar 

  9. Wolfe BM, Schoeller DA, McCrady-Spitzer SK, Thomas DM, Sorenson CE, Levine JA (2018) Resting metabolic rate, total daily energy expenditure, and metabolic adaptation 6 months and 24 months after bariatric surgery. Obesity (Silver Spring) 26(5):862–868. https://doi.org/10.1002/oby.22138. (Epub 2018 Mar 31. PMID: 29604193; PMCID: PMC5916325)

    Article  PubMed  Google Scholar 

  10. National Institutes of Health. "Study quality assessment tools. 2021." Disponível em <https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools> acessado em junho 2022.

  11. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919. (PMID: 27733354; PMCID: PMC5062054)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Metelli S, Chaimani A (2020) Challenges in meta-analyses with observational studies. Evid Based Ment Health 23(2):83–87. https://doi.org/10.1136/ebmental-2019-300129. (Epub 2020 Mar 5 PMID: 32139442)

    Article  PubMed  Google Scholar 

  13. Mirahmadian M, Hasani M, Taheri E, Qorbani M, Hosseini S (2018) Influence of gastric bypass surgery on resting energy expenditure, body composition, physical activity, and thyroid hormones in morbidly obese patients. Diabetes Metab Syndr Obes 23(11):667–672. https://doi.org/10.2147/DMSO.S172028. (PMID: 30425544; PMCID: PMC6204860)

    Article  Google Scholar 

  14. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.

  15. Review Manager (RevMan) [Computer program]. Version 5.4, The Cochrane Collaboration, 2020

  16. Browning MG, Rabl C, Campos GM (2017) Blunting of adaptive thermogenesis as a potential additional mechanism to promote weight loss after gastric bypass. Surg Obes Relat Dis. 13(4):669–673. https://doi.org/10.1016/j.soard.2016.11.016. (Epub 2016 Nov 21. PMID: 28159559; PMCID: PMC5423834)

    Article  PubMed  Google Scholar 

  17. Moehlecke M, Andriatta Blume C, Rheinheimer J, Trindade MRM, Crispim D, Leitão CB (2017) Early reduction of resting energy expenditure and successful weight loss after Roux-en-Y gastric bypass. Surg Obes Relat Dis 13(2):204–209. https://doi.org/10.1016/j.soard.2016.08.027. (Epub 2016 Aug 18 PMID: 27692914)

    Article  PubMed  Google Scholar 

  18. Sans A, Bailly L, Anty R, Sielezenef I, Gugenheim J, Tran A, Gual P, Iannelli A (2017) Baseline anthropometric and metabolic parameters correlate with weight loss in women 1-year after laparoscopic Roux-En-Y gastric bypass. Obes Surg 27(11):2940–2949. https://doi.org/10.1007/s11695-017-2720-8. (Erratum In: Obes Surg. 2017; PMID: 28550439)

    Article  PubMed  Google Scholar 

  19. de Oliveira BAP, de Souza Pinhel MA, Nicoletti CF, de Oliveira CC, Quinhoneiro DCG, Noronha NY, Fassini PG, da Silva Júnior WA, Junior WS, Nonino CB (2017) UCP2 and PLIN1 expression affects the resting metabolic rate and weight loss on obese patients. Obes Surg 27(2):343–348. https://doi.org/10.1007/s11695-016-2275-0. (PMID: 27376365)

    Article  PubMed  Google Scholar 

  20. Wilms B, Ernst B, Thurnheer M, Schmid SM, Spengler CM, Schultes B (2018) Resting energy expenditure after Roux-en Y gastric bypass surgery. Surg Obes Relat Dis 14(2):191–199. https://doi.org/10.1016/j.soard.2017.10.014. (Epub 2017 Oct 31 PMID: 29275093)

    Article  PubMed  Google Scholar 

  21. Tam CS, Rigas G, Heilbronn LK, Matisan T, Probst Y, Talbot M (2016) Energy adaptations persist 2 years after sleeve gastrectomy and gastric bypass. Obes Surg 26(2):459–463. https://doi.org/10.1007/s11695-015-1972-4. (PMID: 26637359)

    Article  PubMed  Google Scholar 

  22. Kraemer MS, Moehlecke M, Rheinheimer J, Canani LH, Leitão CB, Nicoletto BB (2020) Plasma progranulin levels in obese patients before and after Roux-en-Y gastric bariatric surgery: a longitudinal study. Surg Obes Relat Dis 16(11):1655–1660. https://doi.org/10.1016/j.soard.2020.06.056. (Epub 2020 Jul 18 PMID: 32839122)

    Article  PubMed  Google Scholar 

  23. Giusti V, Theytaz F, Di Vetta V, Clarisse M, Suter M, Tappy L (2016) Energy and macronutrient intake after gastric bypass for morbid obesity: a 3-y observational study focused on protein consumption. Am J Clin Nutr 103(1):18–24. https://doi.org/10.3945/ajcn.115.111732. (Epub 2015 Dec 16 PMID: 26675775)

    Article  CAS  PubMed  Google Scholar 

  24. Penson DF, Wei J (2006) Clinical research methods for surgeons. Humana Press

    Google Scholar 

  25. Massarini S, Ferrulli A, Ambrogi F, Macrì C, Terruzzi I, Benedini S, Luzi L (2018) Routine resting energy expenditure measurement increases effectiveness of dietary intervention in obesity. Acta Diabetol 55(1):75–85. https://doi.org/10.1007/s00592-017-1064-0. (Epub 2017 Nov 3 PMID: 29101542)

    Article  PubMed  Google Scholar 

  26. Shantavasinkul PC, Omotosho P, Corsino L, Portenier D, Torquati A (2016) Predictors of weight regain in patients who underwent Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 12(9):1640–1645. https://doi.org/10.1016/j.soard.2016.08.028. (Epub 2016 Aug 21 PMID: 27989521)

    Article  PubMed  Google Scholar 

  27. Karmali S, Brar B, Shi X, Sharma AM, de Gara C, Birch DW (2013) Weight recidivism post-bariatric surgery: a systematic review. Obes Surg 23(11):1922–1933. https://doi.org/10.1007/s11695-013-1070-4. (PMID: 23996349)

    Article  PubMed  Google Scholar 

  28. McNab BK (2019) What determines the basal rate of metabolism? J Exp Biol 222(Pt 15):jeb205591. https://doi.org/10.1242/jeb.205591. (PMID: 31262787)

    Article  PubMed  Google Scholar 

  29. Belligoli A, Bettini S, Segato G, Busetto L (2020) Predicting responses to bariatric and metabolic surgery. Curr Obes Rep 9(3):373–379. https://doi.org/10.1007/s13679-020-00390-1. (PMID: 32542590)

    Article  PubMed  Google Scholar 

  30. Bocchieri-Ricciardi LE, Chen EY, Munoz D, Fischer S, Dymek-Valentine M, Alverdy JC, le Grange D (2006) Pre-surgery binge eating status: effect on eating behavior and weight outcome after gastric bypass. Obes Surg 16(9):1198–1204. https://doi.org/10.1381/096089206778392194. (PMID: 16989704)

    Article  PubMed  Google Scholar 

  31. Blundell JE, Caudwell P, Gibbons C, Hopkins M, Naslund E, King N, Finlayson G (2012) Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Dis Model Mech 5(5):608–613. https://doi.org/10.1242/dmm.009837. (PMID: 22915022; PMCID: PMC3424457)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle T. F. Reichmann.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Compliance with Ethical Standards, Research involving human participants and/or animals, and Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichmann, M.T.F., Duarte, A., Ivano, F. et al. Evolution of the basal metabolic rate after Roux-en-Y gastric bypass: a systematic review and meta-analysis. Updates Surg 75, 1083–1091 (2023). https://doi.org/10.1007/s13304-023-01523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13304-023-01523-6

Keywords

Navigation